75 research outputs found

    Everyday visual demands of people with low vision: A mixed methods real-life recording study

    Get PDF
    Research has demonstrated that low vison aids (LVAs) can have a positive impact on the functional sight of those living with sight loss. Step changes in technology are now enabling new wearable LVAs with greater potential than those available previously. For these novel devices to receive increased acceptance and therefore adoption by those with sight loss, visual task demands have to be understood more clearly in order to enable better alignment between device design and user requirements. The aim of this study was to quantify these requirements. Thirty-two participants aged 18 to 87 wore a spectacle-mounted video camera to capture and narrate all everyday situations in which they would use a “perfect” sight aid during 1 week. Captured scenes were analyzed through categorization and computational image analysis. Results showed large variation in activities and lifestyles. Participants reported no available sight aid or coping strategy for 57% of the recorded activities. Reading made up 49% of all recorded tasks, the other half comprising non-textual information. Overall, 75% of captured activities were performed ad hoc (duration of 0–5 minutes), 78% occurred indoors, 58% occurred at home, 48% were lit by natural light, 68% included the object of interest within reach, and 69% required a single focus plane only. Around half of captured objects of interest had a size of 2 degrees visual angle (2.08 logarithm of the minimum angle of resolution [logMAR]) or smaller. This study highlights the need for a sight aid that can make both textual and non-textual scenes accessible while offering flexibility to accommodate individual lifestyles

    Design considerations for the ideal low vision aid: insights from de-brief interviews following a real-world recording study

    Get PDF
    PURPOSE: Low Vision Aids (LVAs) can have a transformative impact on people living with sight loss, yet the everyday requirements for developing such devices remain poorly understood and defined. This study systematically explored LVA requirements through a structured de-brief interview following a real-world self-recording study. The purpose of this work was to define the actual needs of those living with sight loss so that low vision services can better address them in future. METHODS: Thirty-two visually impaired volunteers with varying levels of previous LVA experience participated in a de-brief interview centred around a structured questionnaire. The de-brief followed a one-week real-world study during which participants used recoding spectacles to capture and narrate all situations in which they would use a ‘perfect sight aid’. Content and thematic analyses were used to analyse interviews which had the purpose of contextualising these recordings and exploring requirements around psychological, functional and design factors. CONCLUSIONS: There is a substantial opportunity for new LVAs to address visual needs that traditional devices and coping strategies cannot support. Functional, psychological and design factors require careful consideration for future LVAs to be relevant and widely adopted

    Visual Fixations Duration as an Indicator of Skill Level in eSports

    Full text link
    Using highly interactive systems like computer games requires a lot of visual activity and eye movements. Eye movements are best characterized by visual fixation - periods of time when the eyes stay relatively still over an object. We analyzed the distributions of fixation duration of professional athletes, amateur and newbie players. We show that the analysis of fixation durations can be used to deduce the skill level in computer game players. Highly skilled gaming performance is characterized by more variability in fixation durations and by bimodal fixation duration distributions suggesting the presence of two fixation types in high skill gamers. These fixation types were identified as ambient (automatic spatial processing) and focal (conscious visual processing). The analysis of computer gamers' skill level via the analysis of fixation durations may be used in developing adaptive interfaces and in interface design.Comment: 10 pages, 3 figure

    Functional Locomotor Consequences of Uneven Forefeet for Trot Symmetry in Individual Riding Horses

    Get PDF
    ABSTRACT: Left-right symmetrical distal limb conformation can be an important prerequisite for a successful performance, and it is often hypothesized that asymmetric or uneven feet are important enhancing factors for the development of lameness. On a population level, it has been demonstrated that uneven footed horses are retiring earlier from elite level competition, but the biomechanical consequences are not yet known. The objectives of this study were to compare the functional locomotor asymmetries of horses with uneven to those with even feet. Hoof kinetics and distal limb kinematics were collected from horses (n = 34) at trot. Dorsal hoof wall angle was used to classify horses as even or uneven (1.5° difference between forefeet respectively) and individual feet as flat (55°). Functional kinetic parameters were compared between even and uneven forefeet using MANOVA followed by ANOVA. The relative influences of differences in hoof angle between the forefeet and of absolute hoof angle on functional parameters were analysed using multiple regression analysis (P<0.05). In horses with uneven feet, the side with the flatter foot showed a significantly larger maximal horizontal braking and vertical ground reaction force, a larger vertical fetlock displacement and a suppler fetlock spring. The foot with a steeper hoof angle was linearly correlated with an earlier braking-propulsion transition. The conformational differences between both forefeet were more important for loading characteristics than the individual foot conformation of each individual horse. The differences in vertical force and braking force between uneven forefeet could imply either an asymmetrical loading pattern without a pathological component or a subclinical lameness as a result of a pathological development in the steeper foot

    Movement asymmetries in horses presented for prepurchase or lameness examination

    Get PDF
    Background The increasing popularity of objective gait analysis makes application in prepurchase examinations (PPE) a logical next step. Therefore, there is a need to have more understanding of asymmetry during a PPE in horses described on clinical evaluation as subtly lame.Objectives The objective of this study is to objectively compare asymmetry in horses raising minor vet concerns in a PPE and in horses raising major vet concerns with that found in horses presented with subtle single-limb lameness, and to investigate the effect of age/discipline on the clinicians' interpretation of asymmetry on the classification of minor vet concerns in a PPE.Study Design Clinical case-series.Methods Horses presented for PPE (n = 98) or subjectively evaluated as single limb low-grade (1-2/5) lame (n = 24, 13 forelimb lame, 11 hindlimb lame), from the patient population of a single clinic, were enrolled in the study provided that owners were willing to participate. Horses undergoing PPE were assigned a classification of having minor vet concerns (n = 84) or major vet concerns (n = 14) based on findings during the dynamic-orthopaedic part of the PPE. Lame horses were only included if pain-related lameness was confirmed by an objective improvement after diagnostic analgesia exceeding daily variation determined for equine symmetry parameters using optical motion capture. Clinical evaluation was performed by six different clinicians, each with >= 8 years of equine orthopaedic experience. Vertical movement symmetry was measured using optical motion capture, simultaneously with the orthopaedic examination. Data were analysed using previously described parameters and mixed model analysis and least squares means were used to calculate differences between groups.Results There was no effect of age or discipline on the levels of asymmetry within PPE horses raising minor vet concerns. MinDiff and RUD of the head discriminated between forelimb lame and PPE horses raising minor vet concerns; MinDiff, MaxDiff, RUD of the Pelvis, HHDswing and HHDstance did so for hindlimb lameness. Two lameness patterns differentiated both forelimb and hindlimb lame from PPE horses with minor vet concerns: RUD Poll + MinDiff Withers - RUD Pelvis and RUD Pelvis + RUD Poll - MinDiff Withers. Correcting for vertical range of motion enabled differentiation of PPE horses with minor vet concerns from PPE horses with major vet concerns.Main Limitations Objective data only based on trot on soft surface, limited number of PPE horses with major vet concerns.Conclusions Combinations of kinematic parameters discriminate between PPE horses with minor vet concerns and subtly lame horses, though overlap exists

    The ELBA Force Field for Coarse-Grain Modeling of Lipid Membranes

    Get PDF
    A new coarse-grain model for molecular dynamics simulation of lipid membranes is presented. Following a simple and conventional approach, lipid molecules are modeled by spherical sites, each representing a group of several atoms. In contrast to common coarse-grain methods, two original (interdependent) features are here adopted. First, the main electrostatics are modeled explicitly by charges and dipoles, which interact realistically through a relative dielectric constant of unity (). Second, water molecules are represented individually through a new parametrization of the simple Stockmayer potential for polar fluids; each water molecule is therefore described by a single spherical site embedded with a point dipole. The force field is shown to accurately reproduce the main physical properties of single-species phospholipid bilayers comprising dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidylethanolamine (DOPE) in the liquid crystal phase, as well as distearoylphosphatidylcholine (DSPC) in the liquid crystal and gel phases. Insights are presented into fundamental properties and phenomena that can be difficult or impossible to study with alternative computational or experimental methods. For example, we investigate the internal pressure distribution, dipole potential, lipid diffusion, and spontaneous self-assembly. Simulations lasting up to 1.5 microseconds were conducted for systems of different sizes (128, 512 and 1058 lipids); this also allowed us to identify size-dependent artifacts that are expected to affect membrane simulations in general. Future extensions and applications are discussed, particularly in relation to the methodology's inherent multiscale capabilities

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/
    • 

    corecore