1,211 research outputs found
Emulsion PCR: A High Efficient Way of PCR Amplification of Random DNA Libraries in Aptamer Selection
Aptamers are short RNA or DNA oligonucleotides which can bind with different targets. Typically, they are selected from a large number of random DNA sequence libraries. The main strategy to obtain aptamers is systematic evolution of ligands by exponential enrichment (SELEX). Low efficiency is one of the limitations for conventional PCR amplification of random DNA sequence library in aptamer selection because of relative low products and high by-products formation efficiency. Here, we developed emulsion PCR for aptamer selection. With this method, the by-products formation decreased tremendously to an undetectable level, while the products formation increased significantly. Our results indicated that by-products in conventional PCR amplification were from primer-product and product-product hybridization. In emulsion PCR, we can completely avoid the product-product hybridization and avoid the most of primer-product hybridization if the conditions were optimized. In addition, it also showed that the molecule ratio of template to compartment was crucial to by-product formation efficiency in emulsion PCR amplification. Furthermore, the concentration of the Taq DNA polymerase in the emulsion PCR mixture had a significant impact on product formation efficiency. So, the results of our study indicated that emulsion PCR could improve the efficiency of SELEX
Contrasting Population Structures of the Genes Encoding Ten Leading Vaccine-Candidate Antigens of the Human Malaria Parasite, Plasmodium falciparum
The extensive diversity of Plasmodium falciparum antigens is a major obstacle to a broadly effective malaria vaccine but population genetics has rarely been used to guide vaccine design. We have completed a meta-population genetic analysis of the genes encoding ten leading P. falciparum vaccine antigens, including the pre-erythrocytic antigens csp, trap, lsa1 and glurp; the merozoite antigens eba175, ama1, msp's 1, 3 and 4, and the gametocyte antigen pfs48/45. A total of 4553 antigen sequences were assembled from published data and we estimated the range and distribution of diversity worldwide using traditional population genetics, Bayesian clustering and network analysis. Although a large number of distinct haplotypes were identified for each antigen, they were organized into a limited number of discrete subgroups. While the non-merozoite antigens showed geographically variable levels of diversity and geographic restriction of specific subgroups, the merozoite antigens had high levels of diversity globally, and a worldwide distribution of each subgroup. This shows that the diversity of the non-merozoite antigens is organized by physical or other location-specific barriers to gene flow and that of merozoite antigens by features intrinsic to all populations, one important possibility being the immune response of the human host. We also show that current malaria vaccine formulations are based upon low prevalence haplotypes from a single subgroup and thus may represent only a small proportion of the global parasite population. This study demonstrates significant contrasts in the population structure of P. falciparum vaccine candidates that are consistent with the merozoite antigens being under stronger balancing selection than non-merozoite antigens and suggesting that unique approaches to vaccine design will be required. The results of this study also provide a realistic framework for the diversity of these antigens to be incorporated into the design of next-generation malaria vaccines
A numerical modelling and simulation of core-scale sandstone acidizing process: a study on the effect of temperature
A wide and comprehensive understanding of the chemical reactions and mechanisms of HBF4 is crucial as it significantly influences its performance in stimulating a sandstone formation. In general, it is well-known that HBF4 is able to provide a deeper penetration into the sandstone matrix before being spent due to its uniquely slow hydrolysis ability to produce HF. In the present study, a 3D numerical modelling and simulation were conducted to examine the capability of HBF4 in enhancing the porosity and permeability of the sandstone matrix. The model is built in COMSOL® Multiphysics commercial software of computational fluid dynamics (CFD) to simulate the acid core flooding process on sandstone core. The model had been validated against the experimental data in the literature. The results matched with the measured plot data very well. The effect of temperature on the performance HBF4 sandstone acidizing is evaluated in this study. The simulation results indicated that at low temperature of 25 °C, HBF4 is not very effective, as justified in its poor porosity and permeability increments of only 1.07 and 1.23, respectively. However, at elevated temperatures, the porosity and permeability enhancement also become increasingly more significant, which showed 1.26 and 2.06, respectively, at 65 °C; and 1.67 and 7.06, respectively, at 105 °C. Therefore, one can conclude that HBF4 acid treatment performed better at elevated temperatures due to increased hydrolysis rate, which is a governing function in HBF4 sandstone acidizing. Overall, this model had provided a reliable alternative to optimize various other parameters of HBF4 acid treatment
How functional programming mattered
In 1989 when functional programming was still considered a niche topic, Hughes wrote a visionary paper arguing convincingly ‘why functional programming matters’. More than two decades have passed. Has functional programming really mattered? Our answer is a resounding ‘Yes!’. Functional programming is now at the forefront of a new generation of programming technologies, and enjoying increasing popularity and influence. In this paper, we review the impact of functional programming, focusing on how it has changed the way we may construct programs, the way we may verify programs, and fundamentally the way we may think about programs
Delay in diagnosis of tuberculosis in Rawalpindi, Pakistan
<p>Abstract</p> <p>Background</p> <p>Delay in diagnosis and treatment of tuberculosis (TB) may enhance the chances of morbidity and mortality and play a key role in continuous transmission of the bacilli. The objective of this study was to describe health care seeking behavior of suspected TB patients and initial diagnostic work up prior to consultation and diagnosis at National TB Center (NTC).</p> <p>Findings</p> <p>Interviews of 252 sputum smear positive patients were taken from NTC, Rawalpindi. The duration between on-set of symptoms and start of treatment was considered as the total delay and correlated with general characteristics of TB patients. The proportion of males and females were 49.6% and 50.4% with median age of 25 and 24 years respectively. A median delay of 56 days (8 weeks) was observed which was significantly associated with age, cough and fever. More than 50% of the current patients had a history of contact with previously diagnosed TB patients. The majority of patients (63%) visited health care providers within three weeks of appearance of symptoms but only thirty five percent were investigated for TB diagnosis.</p> <p>Conclusion</p> <p>Cough and fever are being ignored as likely symptoms of TB by patients as well as health care providers resulting in delay. Engaging private practitioners through public private mix (PPM) approach for expansion of TB diagnosis and increasing public awareness could be more beneficial to reduce delay.</p
Antibody-Mediated Growth Inhibition of Plasmodium falciparum: Relationship to Age and Protection from Parasitemia in Kenyan Children and Adults
BACKGROUND: Antibodies that impair Plasmodium falciparum merozoite invasion and intraerythrocytic development are one of several mechanisms that mediate naturally acquired immunity to malaria. Attempts to correlate anti-malaria antibodies with risk of infection and morbidity have yielded inconsistent results. Growth inhibition assays (GIA) offer a convenient method to quantify functional antibody activity against blood stage malaria.
METHODS: A treatment-time-to-infection study was conducted over 12-weeks in a malaria holoendemic area of Kenya. Plasma collected from healthy individuals (98 children and 99 adults) before artemether-lumefantrine treatment was tested by GIA in three separate laboratories.
RESULTS: Median GIA levels varied with P. falciparum line (D10, 8.8%; 3D7, 34.9%; FVO, 51.4% inhibition). The magnitude of growth inhibition decreased with age in all P. falciparum lines tested with the highest median levels among children \u3c4 years compared to adults (e.g. 3D7, 45.4% vs. 30.0% respectively, p = 0.0003). Time-to-infection measured by weekly blood smears was significantly associated with level of GIA controlling for age. Upper quartile inhibition activity was associated with less risk of infection compared to individuals with lower levels (e.g. 3D7, hazard ratio = 1.535, 95% CI = 1.012-2.329; p = 0.0438). Various GIA methodologies had little effect on measured parasite growth inhibition.
CONCLUSION: Plasma antibody-mediated growth inhibition of blood stage P. falciparum decreases with age in residents of a malaria holoendemic area. Growth inhibition assay may be a useful surrogate of protection against infection when outcome is controlled for age
- …