56 research outputs found

    Study protocol of the iMPaCT project : A longitudinal cohort study assessing psychological determinants, sexual behaviour and chlamydia (re)infections in heterosexual STI clinic visitors

    Get PDF
    Acknowledgements We are grateful to the staff at the STI clinics of Amsterdam, Kennemerland, Hollands Noorden, Twente, who are involved in the recruitment and data collection of participants, and Marlous Ratten and Klazien Visser from Soapoli-online, who are involved in the coordination of laboratory testing of the home-based sampling kits at six-month follow-up. We also thank the staff at the STI department at the National Institute for Public Health and the Environment, especially Birgit van Benthem. Funding This project is funded by the Strategic Programme (SPR) of the National Institute for Public Health and the Environment (RIVM) (project number S/113004/01/IP). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Availability of data and materials The dataset (anonymised) generated during this study will be made available for interested parties on request.Peer reviewedPublisher PD

    Molecular biology of breast cancer metastasis: Inflammatory breast cancer: clinical syndrome and molecular determinants

    Get PDF
    Inflammatory breast cancer (IBC) is an aggressive form of locally advanced breast cancer (LABC) that effects approximately 5% of women with breast cancer annually in the USA. It is a clinically and pathologically distinct form of LABC that is particularly fast growing, invasive, and angiogenic. Nearly all women have lymph node involvement at the time of diagnosis, and approximately 36% have gross distant metastases. Despite recent advances in multimodality treatments, the prognosis of patients with IBC is poor, with a median disease-free survival of less than 2.5 years. Recent work on the genetic determinants that underlie the IBC phenotype has led to the identification of genes that are involved in the development and progression of this disease. This work has been aided by the establishment of primary human cell lines and animal models. These advances suggest novel targets for future interventions in the diagnosis and treatment of IBC

    The Coordination of Leaf Photosynthesis Links C and N Fluxes in C3 Plant Species

    Get PDF
    Photosynthetic capacity is one of the most sensitive parameters in vegetation models and its relationship to leaf nitrogen content links the carbon and nitrogen cycles. Process understanding for reliably predicting photosynthetic capacity is still missing. To advance this understanding we have tested across C3 plant species the coordination hypothesis, which assumes nitrogen allocation to photosynthetic processes such that photosynthesis tends to be co-limited by ribulose-1,5-bisphosphate (RuBP) carboxylation and regeneration. The coordination hypothesis yields an analytical solution to predict photosynthetic capacity and calculate area-based leaf nitrogen content (Na). The resulting model linking leaf photosynthesis, stomata conductance and nitrogen investment provides testable hypotheses about the physiological regulation of these processes. Based on a dataset of 293 observations for 31 species grown under a range of environmental conditions, we confirm the coordination hypothesis: under mean environmental conditions experienced by leaves during the preceding month, RuBP carboxylation equals RuBP regeneration. We identify three key parameters for photosynthetic coordination: specific leaf area and two photosynthetic traits (k3, which modulates N investment and is the ratio of RuBP carboxylation/oxygenation capacity () to leaf photosynthetic N content (Npa); and Jfac, which modulates photosynthesis for a given k3 and is the ratio of RuBP regeneration capacity (Jmax) to). With species-specific parameter values of SLA, k3 and Jfac, our leaf photosynthesis coordination model accounts for 93% of the total variance in Na across species and environmental conditions. A calibration by plant functional type of k3 and Jfac still leads to accurate model prediction of Na, while SLA calibration is essentially required at species level. Observed variations in k3 and Jfac are partly explained by environmental and phylogenetic constraints, while SLA variation is partly explained by phylogeny. These results open a new avenue for predicting photosynthetic capacity and leaf nitrogen content in vegetation models

    HER-2 overexpression differentially alters transforming growth factor-β responses in luminal versus mesenchymal human breast cancer cells

    Get PDF
    INTRODUCTION: Amplification of the HER-2 receptor tyrosine kinase has been implicated in the pathogenesis and aggressive behavior of approximately 25% of invasive human breast cancers. Clinical and experimental evidence suggest that aberrant HER-2 signaling contributes to tumor initiation and disease progression. Transforming growth factor beta (TGF-β) is the dominant factor opposing growth stimulatory factors and early oncogene activation in many tissues, including the mammary gland. Thus, to better understand the mechanisms by which HER-2 overexpression promotes the early stages of breast cancer, we directly assayed the cellular and molecular effects of TGF-β1 on breast cancer cells in the presence or absence of overexpressed HER-2. METHODS: Cell proliferation assays were used to determine the effect of TGF-β on the growth of breast cancer cells with normal or high level expression of HER-2. Affymetrix microarrays combined with Northern and western blot analysis were used to monitor the transcriptional responses to exogenous TGF-β1 in luminal and mesenchymal-like breast cancer cells. The activity of the core TGF-β signaling pathway was assessed using TGF-β1 binding assays, phospho-specific Smad antibodies, immunofluorescent staining of Smad and Smad DNA binding assays. RESULTS: We demonstrate that cells engineered to over-express HER-2 are resistant to the anti-proliferative effect of TGF-β1. HER-2 overexpression profoundly diminishes the transcriptional responses induced by TGF-β in the luminal MCF-7 breast cancer cell line and prevents target gene induction by a novel mechanism that does not involve the abrogation of Smad nuclear accumulation, DNA binding or changes in c-myc repression. Conversely, HER-2 overexpression in the context of the mesenchymal MDA-MB-231 breast cell line potentiated the TGF-β induced pro-invasive and pro-metastatic gene signature. CONCLUSION: HER-2 overexpression promotes the growth and malignancy of mammary epithelial cells, in part, by conferring resistance to the growth inhibitory effects of TGF-β. In contrast, HER-2 and TGF-β signaling pathways can cooperate to promote especially aggressive disease behavior in the context of a highly invasive breast tumor model
    corecore