4,277 research outputs found
Effects of distance dependence of exciton hopping on the Davydov soliton
The Davydov model of energy transfer in molecular chains is reconsidered
assuming the distance dependence of the exciton hopping term. New equations of
motion for phonons and excitons are derived within the coherent state
approximation. Solving these nonlinear equations result in the existence of
Davydov-like solitons. In the case of a dilatational soliton, the amplitude and
width is decreased as a results of the mechanism introduced here and above a
critical coupling strength our equations do not allow for localized solutions.
For compressional solitons, stability is increased.Comment: RevTeX 13 pages, 3 Postscript figure
People Matching for Transportation Planning Using Texel Camera Data for Sequential Estimation
This paper addresses automatic people matching in the dynamic setting of public transportation, such as a bus, as people enter and then at some later time exit from a doorway. Matching a person entering to the same person exiting at a later time provides accurate information about individual riders, such as how long a person is on a bus and the associated stops the person uses. At a higher level, matching exits to previous entry events provides information about the distribution of traffic flow across the whole transportation system. The proposed techniques may be applied at any gateway where the flow of human traffic is to be analyzed. For the purpose of associating entry and exit events, a trellis optimization algorithm is used for sequence estimation, based on multiple texel camera measurements. Since the number of states in the trellis exponentially grows with the number of persons currently on the bus, a beam search pruning technique is employed to manage the computational and memory load. Experimental results using real texel camera measurements show 96% matching accuracy for 68 people exiting a bus in a randomized order. In a bus route simulation where a true traffic flow distribution is used to randomly draw entry and exit events for simulated riders, the proposed sequence estimation algorithm produces an estimated traffic flow distribution, which provides an excellent match to the true distribution
Combined heat and power from the intermediate pyrolysis of biomass materials:performance, economics and environmental impact
Combined heat and power from the intermediate pyrolysis of biomass materials offers flexible, on-demand renewable energy with some significant advantages over other renewable routes. To maximise the deployment of this technology an understanding of the dynamics and sensitivities of such a system is required. In the present work the system performance, economics and life-cycle environmental impact is analysed with the aid of the process simulation software Aspen Plus. Under the base conditions for the UK, such schemes are not currently economically competitive with energy and char products produced from conventional means. However, under certain scenarios as modelled using a sensitivity analysis this technology can compete and can therefore potentially contribute to the energy and resource sustainability of the economy, particularly in on-site applications with low-value waste feedstocks. The major areas for potential performance improvement are in reactor cost reductions, the reliable use of waste feedstocks and a high value end use for the char by-product from pyrolysis
Spiders fluoresce variably across many taxa
The evolution of fluorescence is largely unexplored, despite the newfound occurrence of this phenomenon in a variety of organisms. We document that spiders fluoresce under ultraviolet illumination, and find that the expression of this trait varies greatly among taxa in this species-rich group. All spiders we examined possess fluorophores in their haemolymph, but bright fluorescence appears to result when a spider sequesters fluorophores in its setae or cuticle. By sampling widely across spider taxa, we determine that fluorescent expression is labile and has evolved multiple times. Moreover, examination of the excitation and emission properties of extracted fluorophores reveals that spiders possess multiple fluorophores and that these differ among some families, indicating that novel fluorophores have evolved during spider diversification. Because many spiders fluoresce in wavelengths visible to their predators and prey (birds and insects), we propose that natural selection imposed by predator–prey interactions may drive the evolution of fluorescence in spiders
On three-manifolds dominated by circle bundles
We determine which three-manifolds are dominated by products. The result is
that a closed, oriented, connected three-manifold is dominated by a product if
and only if it is finitely covered either by a product or by a connected sum of
copies of the product of the two-sphere and the circle. This characterization
can also be formulated in terms of Thurston geometries, or in terms of purely
algebraic properties of the fundamental group. We also determine which
three-manifolds are dominated by non-trivial circle bundles, and which
three-manifold groups are presentable by products.Comment: 12 pages; to appear in Math. Zeitschrift; ISSN 1103-467
Solving large-scale MEG/EEG source localisation and functional connectivity problems simultaneously using state-space models
State-space models are widely employed across various research disciplines to study unobserved dynamics. Conventional estimation techniques, such as Kalman filtering and expectation maximisation, offer valuable insights but incur high computational costs in large-scale analyses. Sparse inverse covariance estimators can mitigate these costs, but at the expense of a trade-off between enforced sparsity and increased estimation bias, necessitating careful assessment in low signal-to-noise ratio (SNR) situations. To address these challenges, we propose a three-fold solution: (1) Introducing multiple penalised state-space (MPSS) models that leverage data-driven regularisation; (2) Developing novel algorithms derived from backpropagation, gradient descent, and alternating least squares to solve MPSS models; (3) Presenting a K-fold cross-validation extension for evaluating regularisation parameters. We validate this MPSS regularisation framework through lower and more complex simulations under varying SNR conditions, including a large-scale synthetic magneto- and electro-encephalography (MEG/EEG) data analysis. In addition, we apply MPSS models to concurrently solve brain source localisation and functional connectivity problems for real event-related MEG/EEG data, encompassing thousands of sources on the cortical surface. The proposed methodology overcomes the limitations of existing approaches, such as constraints to small-scale and region-of-interest analyses. Thus, it may enable a more accurate and detailed exploration of cognitive brain functions
Educational change in Scotland: Policy, context and biography
The poor success rate of policy for curriculum change has been widely noted in the educational change literature. Part of the problem lies in the complexity of schools, as policymakers have proven unable to micromanage the multifarious range of factors that impact upon the implementation of policy. This paper draws upon empirical data from a local authority-led initiative to implement Scotland’s new national curriculum. It offers a set of conceptual tools derived from critical realism (particularly the work of Margaret Archer), which offer significant potential in allowing us to develop greater understanding of the complexities of educational change. Archer’s social theory developed as a means of explaining change and continuity in social settings. As schools and other educational institutions are complex social organisations, critical realism offers us epistemological tools for tracking the ebbs and flows of change cycles over time, presenting the means for mapping the multifarious networks and assemblages that form their basis
Acremonium phylogenetic overview and revision of Gliomastix, Sarocladium, and Trichothecium
AbstractOver 200 new sequences are generated for members of the genus Acremonium and related taxa including ribosomal small subunit sequences (SSU) for phylogenetic analysis and large subunit (LSU) sequences for phylogeny and DNA-based identification. Phylogenetic analysis reveals that within the Hypocreales, there are two major clusters containing multiple Acremonium species. One clade contains Acremonium sclerotigenum, the genus Emericellopsis, and the genus Geosmithia as prominent elements. The second clade contains the genera Gliomastix sensu stricto and Bionectria. In addition, there are numerous smaller clades plus two multi-species clades, one containing Acremonium strictum and the type species of the genus Sarocladium, and, as seen in the combined SSU/LSU analysis, one associated subclade containing Acremonium breve and related species plus Acremonium curvulum and related species. This sequence information allows the revision of three genera. Gliomastix is revived for five species, G. murorum, G. polychroma, G. tumulicola, G. roseogrisea, and G. masseei. Sarocladium is extended to include all members of the phylogenetically distinct A. strictum clade including the medically important A. kiliense and the protective maize endophyte A. zeae. Also included in Sarocladium are members of the phylogenetically delimited Acremonium bacillisporum clade, closely linked to the A. strictum clade. The genus Trichothecium is revised following the principles of unitary nomenclature based on the oldest valid anamorph or teleomorph name, and new combinations are made in Trichothecium for the tightly interrelated Acremonium crotocinigenum, Spicellum roseum, and teleomorph Leucosphaerina indica. Outside the Hypocreales, numerous Acremonium-like species fall into the Plectosphaerellaceae, and A. atrogriseum falls into the Cephalothecaceae
Exact two-particle eigenstates in partially reduced QED
We consider a reformulation of QED in which covariant Green functions are
used to solve for the electromagnetic field in terms of the fermion fields. It
is shown that exact few-fermion eigenstates of the resulting Hamiltonian can be
obtained in the canonical equal-time formalism for the case where there are no
free photons. These eigenstates lead to two- and three-body Dirac-like
equations with electromagnetic interactions. Perturbative and some numerical
solutions of the two-body equations are presented for positronium and
muonium-like systems, for various strengths of the coupling.Comment: 33 pages, LaTex 2.09, 4 figures in EPS forma
- …