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Highlights 

• Multiple penalised state-space (MPSS) models to simultaneously solve MEG/EEG source 

localisation and functional connectivity problems are introduced. 

• We demonstrate backpropagation and state-space gradient descent algorithms to be 

straightforward solutions to solve MPSS models, particularly for small-scale scenarios. 

• An alternating least squares (ALS) algorithm, based on closed-form iterative solutions, is 

developed to solve MPSS models much more efficiently for large-scale scenarios, e.g., for 

thousands of brain dipole sources. 

• An extension of K-fold cross-validation to evaluate the MPSS model's regularisation 

parameters is introduced. 

• Evaluations with small- and large-scale simulations and MEG/EEG data demonstrate the 

potential for the MPSS-based regularisation approach to accelerate and improve data-

intensive neuroscience and neuroimaging studies.  

  

                  



Solving large-scale MEG/EEG source localisation and functional 

connectivity problems simultaneously using state-space models 
Jose Sanchez-Bornot1*, Roberto C. Sotero2, J. A. Scott Kelso1,3, Özgür Şimşek4, and Damien Coyle1,4* 

1 Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, 

Ulster University, Magee campus, Derry~Londonderry, UK. 

2 Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada. 

3 Human Brain & Behavior laboratory, Center for Complex Systems & Brain Sciences, Florida Atlantic 

University, Boca Raton, Florida, USA. 

4 Bath Institute for the Augmented Human, University of Bath, Bath, BA2 7AY, United Kingdom. 

* Corresponding authors: JSB: jm.sanchez-bornot@ulster.ac.uk; DC: dhc30@bath.ac.uk  

Abstract 

State-space models are widely employed across various research disciplines to study unobserved 

dynamics. Conventional estimation techniques, such as Kalman filtering and expectation 

maximisation, offer valuable insights but incur high computational costs in large-scale analyses. Sparse 

inverse covariance estimators can mitigate these costs, but at the expense of a trade-off between 

enforced sparsity and increased estimation bias, necessitating careful assessment in low signal-to-

noise ratio (SNR) situations. To address these challenges, we propose a three-fold solution: 1) 

Introducing multiple penalised state-space (MPSS) models that leverage data-driven regularisation; 2) 

Developing novel algorithms derived from backpropagation, gradient descent, and alternating least 

squares to solve MPSS models; 3) Presenting a K-fold cross-validation extension for evaluating 

regularisation parameters. We validate this MPSS regularisation framework through lower and more 

complex simulations under varying SNR conditions, including a large-scale synthetic magneto- and 

electro-encephalography (MEG/EEG) data analysis. In addition, we apply MPSS models to concurrently 

solve brain source localisation and functional connectivity problems for real event-related MEG/EEG 

data, encompassing thousands of sources on the cortical surface. The proposed methodology 

overcomes the limitations of existing approaches, such as constraints to small-scale and region-of-

interest analyses. Thus, it may enable a more accurate and detailed exploration of cognitive brain 

functions. 

Keywords: 

state-space models, source localization, functional connectivity, large-scale analysis, MEG, EEG. 

Introduction 

Solving magneto- and electro-encephalographic (MEG/EEG) source localisation and functional 

connectivity (FC) problems can significantly contribute to the identification and study of information-

processing pathways, enhancing our understanding of spontaneous and evoked events in the human 

brain (Lopes da Silva, 2013). Localised brain region activations underpin information processing, with 

intraregional and interregional communication facilitating the creation and synchronisation of these 

activations in networks such as attentional and default-mode networks (Raichle, 2015). The 

understanding of these phenomena is vital for comprehending human cognitive function as an 

emerging property of the integration and segregation of information processing (Bressler and Kelso, 

                  



2001; Tognoli and Kelso, 2014), which may also be helpful for developing new artificial intelligence 

(AI) methods. 

MEG/EEG and electrocorticogram (ECoG) are popular neuroimaging techniques for studying neuronal 

dynamics due to their millisecond-resolution tracking of brain activity (Lopes da Silva, 2013). While 

these techniques have limitations, such as ECoG's invasiveness or MEG/EEG's lack of spatial specificity, 

the primary shortcomings lie in the analytical tools used to derive information from the recorded 

signals. High computational costs often restrict established brain activity mapping methods to region-

of-interest (ROI) analyses or small-scale simulations. This is evident in the use of the expectation 

maximisation (EM) algorithm for solving dynamic causal models (DCMs) (Friston et al., 2003) and the 

use of state-space models based on EM and Kalman filtering (Barton et al., 2009; Cheung et al., 2010; 

Galka et al., 2004; Long et al., 2011; Shumway and Stoffer, 1982; Van de Steen et al., 2019; Yamashita 

et al., 2004). However, neglecting high-dimensional brain dynamics can yield misleading results due 

to overlooked cause-effect relationships (Bastos and Schoffelen, 2016). Moreover, brain source 

localization and FC methods often address these problems separately (Gross et al., 2001; Haufe et al., 

2013; Haufe and Ewald, 2016; Nolte et al., 2004; Pascual-Marqui et al., 1994; Pascual-Marqui, 1999; 

Sekihara et al., 2001; Sekihara and Nagarajan, 2015; Stam et al., 2007; Stam and van Dijk, 2002; Valdes-

Sosa et al., 2006; Van Veen et al., 1997; Vega-Hernández et al., 2008), despite their interdependence 

(Hincapié et al., 2017; Mahjoory et al., 2017; Manomaisaowapak et al., 2021; Pirondini et al., 2018). 

Although state-space models tackle this issue (Cheung et al., 2010; Galka et al., 2004; Yamashita et al., 

2004), only a few studies have dealt with large-scale analysis (Long et al., 2011). 

A further shortcoming of existing methods for FC assessment is that bias may occur when the analysis 

is performed directly on MEG/EEG sensor data (Cao et al., 2022; Nolte et al., 2004; Sanchez-Bornot et 

al., 2018; Van de Steen et al., 2019), e.g., due to volume conduction. Bias may also arise in FC analysis 

based on fMRI measurements, such as the case of resting-state FC or rs-fMRI studies (Frässle et al., 

2021; Greicius et al., 2009; Power et al., 2012). Since fMRI favours spatial localisation at the expense 

of low temporal resolution (Brookes et al., 2011; Tewarie et al., 2019), rs-fMRI can measure primarily 

a signals temporal correlation while ignoring lagged interactions; thus, giving a false sense of 

quantification of actual brain networks. Moreover, FC analysis based directly on the information 

extracted from brain sources can be biased in methods that reduce dimensions, such as ROI analyses 

(Bastos and Schoffelen, 2016; Hillebrand et al., 2012; Sanchez-Bornot et al., 2021). With the 

emergence of Big Data Analytics (Raghupathi and Raghupathi, 2014) and high-performance computing 

(HPC) tools (Bouchard et al., 2016), it may be significantly advantageous to avoid such limited 

approaches by examining the neuronal dynamics in their natural high-dimensional manifolds. So far, 

however, few neuroimaging studies are exploiting the HPC tools critical for large-scale analysis of the 

brain as a complex dynamical system (Long et al., 2011; Sanchez-Bornot et al., 2021). 

To address the aforementioned limitations, this study has two main objectives: 1) To develop a novel 

methodology for solving state-space models in different signal-to-noise ratio (SNR) scenarios (Figs. 

1A-E), and 2) To solve MEG/EEG source localisation and FC problems simultaneously (Figs. 1F-G). For 

the first objective, we propose a simple backpropagation algorithm for solving state-space models 

(Fig. 1B), enabled by the weight decay technique applied in deep learning to handle noisy signals, as 

justified from a Bayesian perspective (Yang and Wang, 2020). We then introduce more general 

multiple penalised state-space (MPSS) models, allowing for more robust data fitting across various 

SNR scenarios. Moreover, we propose a state-space gradient descent (SSGD) algorithm (Fig. 1C) for 

potentially more stable solutions than backpropagation for MPSS models. Given the quadratic nature 

of the optimisation problem, we also present a state-space alternating least-squares (SSALS) algorithm 

(Fig. 1D) for faster convergence in large-scale analysis. An additional essential technique of our 

                  



proposed framework is a novel extension of K-fold cross-validation for estimating the regularisation 

parameters in MPSS models (Fig. 1E). 

 
Figure 1: Solving state-space models with data-driven regularization techniques. A) State-space model example: MEG/EEG 
data generated by dynamic changes in neuronal activity and communication, as depicted by Eqs. (1, 2). Only sensor 
measurements 𝒚1, … , 𝒚𝑇 are observable, while hidden state variables 𝒙1, … , 𝒙𝑇 represent neuronal dynamics. Directed 
connections (straight arrows) signify the influence of the electromagnetic field on MEG/EEG sensor recordings. The recursive 
connection (circular arrow) emphasizes the recurrent nature of brain communication, as expressed in Eq. (2) via 
multiplication of autoregressive matrices 𝑨1, … , 𝑨𝑃 and corresponding past activations. B) Graphical model of data 
simulation using Eqs. (1, 2), also representing the forward propagation stage of the proposed backpropagation algorithm. 
Primarily, interactions for lag=1,2,3 time delays are shown according to the multivariate autoregressive (MVAR) model. 
Observation noise vectors 𝒘1, … ,𝒘𝑇 are omitted for simplicity, while state noise vectors 𝒗1, … , 𝒗𝑇 are depicted as input 
vectors multiplied by the identity operator 𝑰𝑁 ∈ ℛ

𝑁×𝑁. C) Local optimization of the model using the proposed state-space 
gradient descent (SSGD) algorithm, illustrated for a two-dimensional nonlinear cost function. SSGD and backpropagation rely 
on choosing the gradient descent step size (𝛼) and momentum (Yang and Wang, 2020), affecting the computation of iterative 
solutions (red piecewise linear path) and essential for ensuring convergence to local minima. D) The proposed state-space 
alternating least squares (SSALS) algorithm provides more efficient iteratively closed-form solutions for large-scale analysis, 
primarily by alternating the estimation of parameters 𝒙1, … , 𝒙𝑇 and 𝑨1, … , 𝑨𝑃. E) Proposed extension of classic K-fold cross-
validation based on imputed data from the state-space model, enabling hyperparameter evaluation during model learning 
with proposed algorithms, illustrated for 𝐾 = 5 fold runs. Each row displays a partition of randomly selected time series 
samples (coloured items) excluded from the training data in each corresponding cross-validation run. X-axis: time series 
samples. F-G) This methodology allows simultaneous estimation of brain source localization and FC problems by estimating 

𝒙̂1, … , 𝒙̂𝑇 (shown at t=19 and t=28 time instants) and 𝑨̂1, … , 𝑨̂𝑃 (shown for lag=3 and lag=4 time delays), represented by 
colourmaps and arrows superimposed on the brain cortical surface, respectively, as demonstrated for a simulated example. 
F) Coloured spheres are placed on the cortical surface along with estimated source activities to emphasize the location of 
five simulated dipoles. G) Identical coloured spheres are overlaid on the (transparent) cortical surfaces as in F with the same 
viewpoint orientation. Connections are also shown among 96 of the 100 most prominent estimated dipoles, represented by 
arrows, using a 15% threshold relative to the maximum connectivity value for improved visibility. Brown-coloured arrows 
indicate estimated positive connections, while blue-coloured arrows denote negative connections. 

                  



To address the second objective, we apply our methodology to estimate large-scale brain sources and 

their underlying FC for simulated MEG/EEG data in resting state and event related experimental 

conditions, assessing the accuracy of estimated spatiotemporal components and FC maps with 

ground-truth information. We then evaluate the methodology using single-subject MEG/EEG data for 

a familiar face recognition task as a proof of concept. In conclusion, our proposed methods can 

improve the performance of state-of-the-art techniques for solving state-space models and contribute 

to advancing the research on source localisation and FC problems. This methodology can also 

accelerate data-intensive neuroscience and neuroimaging studies to improve our understanding of 

cognitive brain functioning. 

Materials and Methods 

Instead of using probabilistic approaches such as the Kalman filter and EM for solving state-space 

models, we developed and evaluated alternative algorithms such as those based on backpropagation, 

gradient descent and alternating least square approaches. The state-space model is represented using 

multivariate autoregressive (MVAR) modelling as follows (Eq. (2)): 

 
 𝐲𝑡 = 𝐁𝐱𝑡 +𝐰𝑡; with 𝐰𝑡~𝑁(0, 𝜎𝑜

2𝐈𝑀); 𝑡 = 1,2,… , 𝑇, (1) 

 
 𝐱𝑡 = ∑ 𝐀𝑝𝐱𝑡−𝑝

𝑃
𝑝=1 + 𝐯𝑡; with 𝐯𝑡~𝑁(0, 𝜎𝑠

2𝐈𝑁); 𝑡 = 𝑃 + 1,… , 𝑇, (2) 

where 𝐱𝑡ϵℛ
𝑁×1 (column vector) represents the state dynamics, for 𝑡 = 1,2,… , 𝑇 time instants. We 

use the MVAR generative model to produce surrogate data for the modelled neuronal activity in 𝑁 

spatial locations of the brain, while the MVAR’s coefficients 𝐀𝑝 ϵ ℛ
𝑁×𝑁, 𝑝 = 1,… , 𝑃, represent the 

surrogate neuronal communication for lagged (time-delayed, lag=1,… , 𝑃) interactions. The observed 

dynamics 𝐲𝑡ϵℛ
𝑀×1  represent 𝑀-variate measurements (time series) obtained from the MEG/EEG 

sensors (Eq. (1)), and 𝐁𝜖ℛ𝑀×𝑁 is the mixing (lead field) matrix. The state-space model also includes 

noise terms 𝐯𝑡 ϵℛ
𝑁×1~𝑁(0, 𝜎𝑠

2𝐈𝑁) and 𝐰𝑡ϵℛ
𝑀×1~𝑁(0, 𝜎𝑜

2𝐈𝑀) to account for the perturbation in 

state and observation dynamics, respectively. For simplicity, we assume that noise terms are 

independent and follow multivariate normal distributions with variances 𝜎𝑜
2 and 𝜎𝑠

2. 

Backpropagation algorithm for state-space models 
To develop a backpropagation implementation of the state-space model (Eqs. 1, 2), we first created a 

graphical representation of its algebraic operations (Fig. 1B). This graphical model represents the 

general case of one or more delayed influences and resembles the unrolled graphical representation 

of interactions in recurrent neural networks (RNNs) (Lillicrap and Santoro, 2019; Werbos, 1990), in 

which the MVAR’s coefficients 𝐀𝑝, 𝑝 = 1,… , 𝑃, play a similar role to the shared weights in RNNs. 

Table 1 shows a backpropagation algorithm to solve the state-space model. In order to improve 

convergence, we implement backpropagation using gradient descent (GD) with the momentum 

modification, and using the weight decay technique (Yang and Wang, 2020). The only known data to 

solve this problem are the observations 𝐲𝑡, while 𝐱𝑡 and 𝐀𝑝 are the model parameters. 

Backpropagation enables the estimation of 𝐀𝑝 and 𝐯𝑡 directly and uses the MVAR’s equation to 

generate the time series 𝐱̂𝑡 from these estimates during the forward propagation phase, i.e., 𝐱̂𝑡 =

∑ 𝐀̂𝑝𝐱̂𝑡−𝑝
𝑃
𝑝=1 + 𝐯̂𝑡, for 𝑡 = 𝑃 + 1,… , 𝑇. Also, notice that we are penalizing the error term, 

correspondingly to the weight decay implementation, which results in the regularised optimisation 

problem 𝐹 =
1

2𝑇
∑ {(𝐳𝑡 − 𝐲𝑡)

2 + 𝜆‖𝐯𝑡‖2
2}𝑇

𝑡=1  instead of the original optimisation function shown in the 

table, which is similar to the expression in Ridge regression (Hastie et al., 2001). 

                  



Table 1: Backpropagation algorithm for the state-space model represented in Eqs. (1, 2) and Fig. 1B. 

Error function 

𝐹 =
1

2𝑇
∑ (𝐳𝑡 − 𝐲𝑡)

2𝑇
𝑡=1 , 

where 𝐳𝑡 and 𝐲𝑡 represent the measured data and predicted outcome, respectively, from the 
backpropagation forward pass step. 

Forward propagation (for  𝑖 = 1,… , 𝐼 iterations) 

𝐱𝑡(𝑖) = 𝐯𝑡(𝑖); for 𝑡 = 1,… , 𝑃, 

𝐱𝑡(𝑖) = ∑ 𝐀𝑝(𝑖)𝐱𝑡−𝑝(𝑖)
𝑃
𝑝=1 + 𝐯𝑡(𝑖); for 𝑡 = 𝑃 + 1,… , 𝑇, 

𝐲𝑡(𝑖) = 𝐁𝐱𝑡(𝑖); for 𝑡 = 1,… , 𝑇. 

Partial derivatives using chain rule for the 𝒊-th iteration (iteration index removed for simplicity) 

𝛅𝑡
𝑦
= 𝜕𝐹 𝜕𝐲𝑡⁄ = − (𝐳𝑡 − 𝐲𝑡) 𝑇⁄ ; for 𝑡 = 1,… , 𝑇, 

𝛅𝑇
𝑥 = 𝜕𝐹 𝜕𝐱𝑇⁄ = 𝐁𝑇𝛅𝑇

𝑦
, 

𝛅𝑡
𝑥 = 𝜕𝐹 𝜕𝐱𝑡⁄ = 𝐁𝑇𝛅𝑡

𝑦
+ ∑ 𝐀𝑝

𝑇𝛅𝑡+𝑝
𝑥𝑚𝑖𝑛(𝑃,𝑇−𝑡)

𝑝=𝑚𝑎𝑥(𝑃+1−𝑡,1) ; calculate backwards for 𝑡 = 𝑇 − 1,… ,2,1. 

Note that application of the chain rule is backwards for correct calculations/updates. Also note that, 
although dynamics in 𝐱𝑡 affect 𝐱𝑡+1, … , 𝐱𝑡+𝑝, in the extreme cases 𝐱𝑇−1 only affects 𝐱𝑇, and 𝐱1 only 

affects 𝐱𝑃+1, in agreement with the forward propagation phase (previous step). 

Parameter updates using gradient descent 

𝐯𝑡(𝑖 + 1) = 𝐯𝑡(𝑖) − 𝛼(𝛅𝑡
𝑥 + (𝜆 𝑇⁄ )𝐯𝑡(𝑖)); for 𝑡 = 1,… , 𝑇, 

𝐀𝑝(𝑖 + 1) = 𝐀𝑝(𝑖) − 𝛼∑ 𝛅𝑡
𝑥𝐱𝑡−𝑝(𝑖)

𝑇𝑇
𝑡=𝑃+1 ; for 𝑝 = 1,… , 𝑃, 

where 𝛼 is the step size adopted along the gradient descent direction. Here, 𝜆 ≥ 0 is a regularisation 
parameter often used to implement weight decay in the training of artificial neural networks 
(ANNs), which can be justified using a Bayesian interpretation and assuming that the noise terms 
𝐯𝑡 follow a normal distribution. Similarly, we can rewrite the second expression as 𝐀𝑝(𝑖 + 1) =

𝐀𝑝(𝑖) − 𝛼(∑ 𝛅𝑡
𝑥𝐱𝑡−𝑝(𝑖)

𝑇 + (𝜆2 𝑇⁄ )𝐀𝑝(𝑖)
𝑇
𝑡=𝑃+1 ), with 𝜆2 ≥ 0; however, for simplicity, here we 

ignored the application of weight decay on the estimation of 𝐀𝑝, for 𝑝 = 1,… , 𝑃. 

Multiple penalised state-space (MPSS) models 
State-space models can also be examined from a Bayesian perspective by using probability 

distributions to represent the state and observation dynamics and incorporate a priori information 

that may enhance the estimators’ stability. For example, conditional and a priori distributions justify 

the implementation of weight decay in backpropagation (see Eqs. (4, 5) below). These statistical 

designs are also widely considered for solving the brain inverse problem, as shown by MUSIC, LORETA, 

and other methods (Grech et al., 2008; Vega-Hernández et al., 2008). 

In the present case, we consider the following assumptions: 

• Conditional distribution for the observation variable: 

 
 𝐲𝑡|𝐁, 𝐱𝑡~𝑁(𝐁𝐱𝑡 , 𝜎𝑜

2𝐈𝑀). (3) 

• Conditional distribution for the state variable: 

 
 𝐱𝑡>𝑃|{𝐀1, … , 𝐀𝑃},  {𝐱1, … , 𝐱𝑡−1}~𝑁(∑ 𝐀𝑝𝐱𝑡−𝑝

𝑃
𝑝=1 , 𝜎𝑠

2𝐈𝑁). (4) 

• A priori distribution for the state variable: 

                  



 
 𝐱𝑡≤𝑃~𝑁(𝟎𝑁 , 𝜎𝑠

2𝐈𝑁), (5) 

where 𝟎𝑁 and 𝐈𝑁 are the zero vector and the identity matrix with 𝑁 elements and 𝑁 × 𝑁 dimension, 

respectively. 

• A priori distribution for the autoregressive coefficients: 

 
 𝑣𝑒𝑐(𝐀)~𝑁(𝟎𝑁2𝑃 , 𝜎2,𝑎

2 𝐈𝑁2𝑃), (6) 

where 𝐀 = [𝐀1, … , 𝐀𝑃] ∈ ℛ
𝑁×𝑁𝑃 is the matrix that contains all the autoregressive coefficients, shown 

by using Matlab notation for horizontal concatenation for a better understanding; 𝑣𝑒𝑐(𝐀) is the 

vectorized representation following Matlab’s column-major notation. 

Additionally, we can also use sparse priors: 

 
 𝑣𝑒𝑐(𝐱)~𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝟎, 𝜎1,𝑥

2 𝐈𝑁𝑇), (7) 

where 𝐱 contains all the state's variables for all time instants, similar to the notation used for 𝐀, and/or 

 
 𝑣𝑒𝑐(𝐀)~𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝟎, 𝜎1,𝑎

2 𝐈𝑁2𝑃); (8) 

although, in practice, we may only adopt sparse priors in a large-scale scenario to control 

dimensionality through numerical optimization. 

In general, using the Bayesian approach enables the proposition of a multiple penalised state-space 

(MPSS) framework, where the maximum a posteriori estimate for the parameters 𝐱 ∈ ℝ𝑁×𝑇 and 𝐀 ∈

ℛ𝑁×𝑁𝑃 are obtained from solving the MPSS optimisation problem: 

𝐹 =
1

2𝑇
(
∑ ‖𝐲𝑡 − 𝐁𝐱𝑡‖2

2𝑇
𝑡=1 + 𝜆∑ ‖𝐱𝑡 − ∑ 𝐀𝑝𝐱𝑡−𝑝

𝑃
𝑝=1 ‖

2

2𝑇
𝑡=𝑃+1 + 𝜆∑ ‖𝐱𝑡‖2

2𝑃
𝑡=1 + 𝜆2

(𝑎)‖𝐀‖𝐹
2

+2𝜆1
(𝑥)‖𝐱‖1 + 2𝜆1

(𝑎)‖𝐀‖1

), (9) 

𝐱̂, 𝐀̂ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝐱,𝐀

𝐹 (𝐱, 𝐲, 𝐀, 𝐁, 𝜆, 𝜆2
(𝑎), 𝜆1

(𝑥), 𝜆1
(𝑎)). (10) 

State-space gradient descent (SSGD) algorithm to solve MPSS models  
For estimating MPSS models, we initially propose a state-space gradient descent (SSGD) approach as 

an alternative to the aforementioned backpropagation algorithm. SSGD is implemented based on the 

following partial derivatives: 

𝑇
𝜕𝐹

𝜕𝐱𝑡
=

−𝐁𝑇(𝐲𝑡 − 𝐁𝐱𝑡) + 𝜆(𝐱𝑡 − ∑ 𝐀𝑝𝐱𝑡−𝑝
𝑃
𝑝=1 )

−𝜆∑ 𝐀𝑞
𝑇(𝐱𝑡+𝑞 − ∑ 𝐀𝑝𝐱𝑡+𝑞−𝑝

𝑃
𝑝=1 )

𝑚𝑖𝑛(𝑃,𝑇−𝑡)
𝑞=1 + 𝜆1

(𝑥)𝑠𝑔𝑛(𝐱𝑡)
; for 𝑡 = 𝑃 + 1,… , 𝑇, 

 

(11) 

𝑇
𝜕𝐹

𝜕𝐱𝑡
=
−𝐁𝑇(𝐲𝑡 − 𝐁𝐱𝑡) − 𝜆∑ 𝐀𝑞

𝑇(𝐱𝑡+𝑞 − ∑ 𝐀𝑝𝐱𝑡+𝑞−𝑝
𝑃
𝑝=1 )

𝑚𝑖𝑛(𝑃,𝑇−𝑡)
𝑞=𝑚𝑎𝑥(𝑃+1−𝑡,1)

+𝜆𝐱𝑡 + 𝜆1
(𝑥)𝑠𝑔𝑛(𝐱𝑡)

; for 𝑡 = 1,… , 𝑃, 

  

(12) 

𝑇
𝜕𝐹

𝜕𝐀𝑝
= −𝜆∑ (𝐱𝑡 − ∑ 𝐀𝑞𝐱𝑡−𝑞

𝑃
𝑞=1 )𝑇

𝑡=𝑃+1 𝐱𝑡−𝑝
𝑇 + 𝜆1

(𝑎)𝑠𝑔𝑛(𝐀) + 𝜆2
(𝑎)𝐀; for 𝑝 = 1,  … ,  𝑃. (13) 

Realistically, to estimate the parameters 𝐱𝑡, 𝑡 = 1,2, … , 𝑇, and 𝐀𝑝, 𝑝 = 1,… , 𝑃, we must first find 

suitable values for the hyperparameters 𝜆, 𝜆2
(𝑎), 𝜆1

(𝑥), and 𝜆1
(𝑎). Next we propose an extension of 𝐾-

fold cross-validation to select these values. Otherwise, assuming the conditional and a priori 

                  



distributions are known, we can estimate “naïve” solutions corresponding to 𝜆 = 𝜎𝑜
2 𝜎𝑠

2⁄ , 𝜆2
(𝑎) =

𝜎𝑜
2 𝜎2,𝑎

2⁄ , 𝜆1
(𝑥) = 0.5 𝜎𝑜

2 𝜎1,𝑥
2⁄  and 𝜆1

(𝑎) = 0.5 𝜎𝑜
2 𝜎1,𝑎

2⁄ . 

𝑲-fold cross-validation based on imputed data for state-space models 
We propose an extension of the 𝐾-fold cross-validation method (Hastie et al., 2001) to estimate the 

prediction error in state-space models as represented in Eqs. (1, 2). As in the original cross-validation 

method, we randomly separate the data samples (time point measurements in our case) into 𝐾-fold 

subsets. One critical difference, in our case, is that the data correspond to the temporal sequence 𝐲𝑡, 

𝑡 = 1,… , 𝑇, with an underlying autoregressive (generative) model. Leaving out a patch of adjacent 

samples is highly detrimental to model estimation due to the temporal dependency. Thus, we 

implement the 𝐾-fold partition by dividing the samples into nonoverlapping adjacent time windows 

of length 𝐾 and subsequently randomly assigning each time-window sample to one of the 𝐾-fold 

subsets. This procedure guarantees a balanced partition of the samples into 𝐾 subsets 

{𝑦𝜏1
(1)
, … , 𝑦𝜏|𝑆1|

(1)
} ∈ 𝑆1, … , {𝑦𝜏1

(𝐾)
, … , 𝑦𝜏|𝑆𝐾|

(𝐾)
} ∈ 𝑆𝐾, where |𝑆| represents the subset's cardinality. At the 

same time, it guarantees that no more than two adjacent time-instant samples are assigned to the 

same subset (see Fig. 1E for the case of 𝐾 = 5 and 𝑇 = 200). 

The other essential difference with the classical cross-validation approach is that usually, the data 

consist of pairs (𝐱𝑡 , 𝐲𝑡), which are assigned randomly to each 𝐾-fold subset. However, in our state-

space model, we only know 𝐲𝑡 and 𝐱𝑡 must be estimated together with the other model parameters. 

Therefore, for each 𝐾-fold run, to estimate the prediction error for the hold-out samples {𝐲𝜏} ∈ 𝑆𝑘, 

we first estimate their corresponding “missing” part {𝐱𝜏}. Reflecting on this feature, we refer to our 

procedure as 𝐾-fold cross-validation based on imputed data (𝐾-fold CVI) as we first need to impute 

{𝐱𝜏} by treating {𝐲𝜏} ∈ 𝑆𝑘 as missing values, for each run 𝑘 = 1,… , 𝐾, before evaluating the prediction 

error. 

Corresponding to this modification, we change the original MPSS optimisation function (Eqs. (9, 10)) 

to account for the 𝐾-fold hold-out subset at each iteration, as follows: 

𝐹𝑘 =
1

2𝑇
(
∑ 𝐿𝑡

(𝑘)‖𝐲𝑡 − 𝐁𝐱𝑡‖2
2𝑇

𝑡=1 + 𝜆∑ ‖𝐱𝑡 − ∑ 𝐀𝑝𝐱𝑡−𝑝
𝑃
𝑝=1 ‖

2

2𝑇
𝑡=𝑃+1 + 𝜆∑ ‖𝐱𝑡‖2

2𝑃
𝑡=1

+𝜆2
(𝑎)‖𝐀‖𝐹

2 + 2𝜆1
(𝑥)‖𝐱‖1 + 2𝜆1

(𝑎)‖𝐀‖1

), (14) 

𝐱̂(𝑘), 𝐀̂(𝑘) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝐱,𝐀

𝐹𝑘 (𝐱, 𝐲, 𝐀, 𝐁, 𝜆, 𝜆2
(𝑎), 𝜆1

(𝑥), 𝜆1
(𝑎)); for 𝑘 = 1,… , 𝐾, (15) 

where 𝐿𝑡
(𝑘) = {

0, if y𝑡 ∈ 𝑆𝑘
1, otherwise

 is a cost function, set up to remove the contribution of the hold-out 

data samples {𝐲𝜏} ∈ 𝑆𝑘 for each 𝐾-fold run. 

After that, we calculate the prediction error by averaging the errors for the predicted observation for 

each hold-out sample, for all the 𝐾-fold runs: 

 
 

𝑃𝐸 =
1

(𝑇−𝑃)𝑀𝐾
∑ ∑ ‖𝐲𝑡

(𝑘) −𝐁𝐱̂𝑡
(𝑘)
‖
2

2

𝐲𝑡∈𝑆𝑘
𝐾
𝑘=1 . (16) 

Alternating least squares (SSALS) and hybrid algorithms for state-space models 
Here, we develop an SSALS algorithm for large-scale analysis. As the optimisation problem above is 

quadratic, the solutions have a closed form obtained by solving the optimisation problem separately 

for the parameter subsets {𝐱𝑡}, 𝑡 = 1,… , 𝑇, and {𝐀𝑝}, 𝑝 = 1,… , 𝑃. For example, conditioning on the 

                  



previous solution for the autoregressive coefficients, {𝐀̂𝑝
(𝑖)
}, at iteration 𝑖 = 1,… , 𝐼, the closed-form 

solution for {𝐱𝑡} is 

 
 

𝐗̂𝑉
(𝑖+1) = (𝐃𝐿

𝑇𝐃𝐿⨂𝐁
𝑇𝐁 + 𝜆(𝐈𝑇𝑁 −𝐖)

𝑇(𝐈𝑇𝑁 −𝐖))
−1
(𝐃𝐿

𝑇𝐃𝐿⨂𝐈𝑁)𝑣𝑒𝑐(𝐁
𝑇𝐘) (17) 

where 𝐗̂𝑉
(𝑖+1)

= 𝑣𝑒𝑐(𝐗̂(𝑖+1)) is the vectorized representation (𝐗̂(𝑖+1) ∈ ℛ𝑁×𝑇), ⨂ is the Kronecker’s 

product, 𝐃𝐿 is a diagonal matrix with the diagonal entries set to the values of the cost function  𝐿𝑡
(𝑘)

, 

and 𝐖 is a matrix encoding the contribution of the autoregressive term as shown below. 

Notice that in Eq. (14) 

 
 ∑ ‖𝐱𝑡 − ∑ 𝐀𝑝𝐱𝑡−𝑝

𝑃
𝑝=1 ‖

2

2𝑇
𝑡=𝑃+1 + ∑ ‖𝐱𝑡‖2

2𝑃
𝑡=1 = ‖(𝐈𝑇𝑁 −𝐖)𝑣𝑒𝑐(𝐗)‖2

2, (18) 

where 

 
 

𝐖 =

[
 
 
 
 
 
 
 
𝟎𝑁 𝐀1 ⋯
𝟎𝑁 𝟎𝑁 𝐀1
⋱ 𝟎𝑁 𝟎𝑁

𝐀𝑃 𝟎𝑁 ⋱
⋯ 𝐀𝑃 𝟎𝑁
𝐀1 ⋯ 𝐀𝑃

⋱

⋱ ⋯ ⋱

⋱

𝟎𝑁
⋱

𝟎𝑁
𝟎𝑁

𝐀1
𝟎𝑁

⋱ ⋱ 𝟎𝑁
⋱ ⋱ 𝟎𝑁

⋯
𝟎𝑁

𝐀𝑃
𝟎𝑁

𝟎𝑁 𝟎𝑁
𝟎𝑁 𝟎𝑁]

 
 
 
 
 
 
 

, (19) 

is a diagonal-block matrix with the autoregressive matrices in the corresponding super diagonal 

positions for each lag=1,…,P. Also, notice that the involved matrix dimension is 𝑁𝑇 ×𝑁𝑇, but these 

are very highly-sparse matrices with a convenient block structure. That is, they can be treated as 

banded-block matrices for compact representation, a fact that may be very convenient to speed 

calculations. Notice also that {𝐱𝑡} must be considered in time-reversal order, so 𝑣𝑒𝑐(𝐗) can be 

correctly multiplied by 𝐖 in the right-hand side of Eq. (18). 

Furthermore, given the numerical values 𝐗̂(𝑖+1) obtained from Eq. (17), then 

 
 𝐀̂(𝑖+1) = 𝐗𝑃+1:𝑇𝐙

𝑇(𝐙𝐙𝑇)−1, (20) 

is the classical least-squares solution for MVAR equations, where 𝐀̂ = [𝐀̂1, … , 𝐀̂𝑃] and 𝒁 =

[𝐗𝑃:𝑇−1, … , 𝐗1:𝑇−𝑃] are both defined by following Matlab’s horizontal concatenation notation. 

Besides, 𝐗𝑖:𝑗 is a shortcut for 𝐗(: , 𝑖: 𝑗) that represents the subblock matrix with elements between 

columns 𝑖 and 𝑗, including both subindices. Solving the Yule-Walker equations can be more efficient 

(Barnett and Seth, 2014), but the least squares notation is simpler for our presentation purposes. 

More general than the alternating least squares (ALS) algorithm, we introduce a hybrid method 

between gradient descent (GD) and ALS, called HGDALS, based on interleaving GD and ALS iterations. 

While ALS has a much faster convergence rate than GD, the latter is less computationally expensive. 

The advantage of this combination is not clear in the quadratic case, as ALS alone produces very fast 

convergence to the solution. However, combining GD and ALS could render better results for a general 

nonlinear optimisation problem. Succinctly, HGDALS relies on applying one iteration of ALS with as 

many iterations, 𝐼GD, of GD as calculated by the formula 

 
 ∆𝐹GD

∆𝐹ALS
≈

𝐼GD𝑇GD

𝑇ALS
, (21) 

                  



which balances the ratio between the optimisation function evaluation changes by GD (∆𝐹GD) and ALS 

(∆𝐹ALS), with the ratio of their computational cost or calculation time for a single (previous) iteration. 

Therefore, if ALS is not producing faster local convergence than GD, HGDALS will automatically 

increase the number of GD's iterations. Conveniently, we simultaneously limit the number of GD's 

iterations, so the GD's total time is not more than, for example, 20% of ALS computational time, i.e., 

𝐼GD𝑇GD ≤ 0.2𝑇ALS. A summary of the HGDALS follows in Table 2. 

Table 2: HGDALS algorithm. 

𝐼GD = 1; 

for 𝑖 = 1,… , 𝐼 

    𝐹 = function_evaluation(); 

    time = clock(); 

    <model optimisation with ALS> 

    𝑇ALS = clock() − time; 

    ∆𝐹ALS = 𝐹 − function_evaluation(); 

    if (𝑖 > 1) 

        𝐼GD = min(0.2𝑇ALS 𝑇𝐺𝐷⁄ , ceil((∆𝐹GD𝑇ALS) (∆𝐹ALS𝑇GD)⁄ )); 

    end 

    𝐹 = function_evaluation(); 

    time = clock(); 

    for 𝑗 = 1,… , 𝐼GD 

        <model optimisation with GD> 

    end 

    𝑇𝐺𝐷 = (clock() − time) 𝐼GD⁄ ; 

    ∆𝐹𝐺𝐷 = 𝐹 − function_evaluation(); 

end 

Simulations with state-space models 
We validate the algorithms discussed in this study using synthetic signals randomly generated with 

the state-space model in Eqs. (1, 2) for different scenarios. These models use fixed (ground truth) 

autoregressive matrices 𝐀𝑝, 𝑝 = 1,… , 𝑃, from which time series 𝐱𝑡 and 𝐲𝑡 are randomly generated. 

Particularly, we create three different simulations: the more straightforward of those generate 

bivariate and three-variate time series with 𝑃 = 1 and 𝑃 = 3 time-lagged influences, respectively, 

while the two more complex cases involve the simulation of two and five state variables, with 𝑃 = 5 

time-lagged influences, corresponding to simulated sources with random locations in a template brain 

cortical surface. However, the estimation in the latter cases will involve estimating the source 

dynamics for thousands of sources (brain dipoles) and their connections, as the ground-truth actual 

number of sources is ignored during the estimation step. 

We use a numerical tolerance of 10−6 on the partial derivatives (cost function) norms as convergence 

criteria for backpropagation and the other algorithms, unless otherwise stated. Only the 

measurement data (𝐲𝑡) will be used during the model estimation step for each of the tested 

algorithms, whereas 𝐱𝑡 and 𝐀𝑝 will serve as ground truth for the evaluation of the estimated 

coefficients. To evaluate the accuracy of estimates 𝐱̂𝑡 and 𝐀̂𝑝, we can use the relative squared error 

(RSE) formula. For example, for evaluating the accuracy of each individual estimated time series, the 

error can be calculated as 𝑅𝑆𝐸 = 100 ∗
∑ (𝑥𝑡−𝑥̂𝑡)

2𝑇
𝑡=1

∑ (𝑥𝑡−𝑥̅)
2𝑇

𝑡=1
, where 𝑥̅ =

1

𝑇
∑ 𝑥𝑡
𝑇
𝑡=1 , represented in percentage 

(%) with respect to the base error for enhanced interpretation. 

                  



Small-scale simulation of time series data 
The bivariate simulations are created using 𝑇 = 200, 𝑀 = 5, 𝑁 = 2, and 𝑃 = 1 (lag=1), by setting 

𝜎𝑜 = 0.1, 𝜎𝑜 = 0.5, or 𝜎𝑜 = 1, while always setting 𝜎𝑠 = 1 for each case, to simulate three different 

SNR scenarios, with fixed 𝐀1 = [
−0.5 0
0.7 −0.5

]. 

Similarly, the three-variate simulations are created using 𝑇 = 240, 𝑀 = 5, 𝑁 = 3, and 𝑃 = 3 

(lag=1,2,3), and setting the noise parameters as in the bivariate case for three different SNR scenarios. 

In contrast to the bivariate simulation, the complexity increases because the three-variate model 

involves three latent variables (𝑁 = 3) and three time-lagged interactions (𝑃 = 3). For the three-

variate simulation, the ground-truth autoregressive coefficients are fixed as follows (Stokes and 

Purdon, 2018): 

𝐀 = {[
−0.9000 0 0
−0.3560 1.2124 0

0 −0.3098 −1.3856
] , [
−0.8100 0 0
0.7136 −0.4900 0
0 0.5000 −0.6400

] , [
0 0 0

−0.3560 0 0
0 −0.3098 0

]}, 

where the coefficient matrices corresponding to the time-lagged interactions are horizontally stacked 

inside curly brackets from left to right in increasing delay order. 

Large-scale brain simulations for resting state and event related MEG/EEG data 
The two large-scale simulations discussed in this section are based on Haufe and Ewald's MEG/EEG 

toolbox (Haufe and Ewald, 2016) and simulate resting state and event-related experimental 

conditions. Haufe and Ewald's toolbox provides high- and low-resolution mesh data (surface's triangle 

and vertex points) for the so-called “New York” brain, with 74,382 and 2,004 vertices, respectively, as 

well as the vertices for standard and inflated cortical surfaces. The high-resolution meshes enables 

plotting of the results on the brain cortical surface. At the same time, the low-resolution vertices 

provide the locations to calculate the dynamic state variables in our procedure; therefore, for these 

simulations we will estimate 𝑁 = 2004 sources. The toolbox also provides lead field matrices 

calculated for MEG and EEG forward problems for dipoles perpendicularly oriented to the cortical 

surface. In our case, for the first large-scale simulation we simulate MEG data, and thereby M=298 

sensors; whereas, for the second large-scale simulation, we generate synthetic EEG data, and thus 

M=108. In all cases, as the dimension of the largest matrix in Eq. (17) is 𝑁𝑇 × 𝑁𝑇, we could not use a 

value of 𝑇 > 50 because of limited RAM memory resources. Thereby, in these simulations, we set 𝑇 =

30 while considering the sampling frequency 𝐹𝑆 = 250 Hz (equivalent to 4 ms time resolution) and 

𝑇 = 18 for 𝐹𝑆 = 125 Hz (8 ms time resolution), respectively, and simulated 𝑃 = 5 time-lagged 

influences (lag=1,…,5) in both cases, which is equivalent to considering influences as long as 20 or 40 

ms from the past. 

To be as realistic as possible, we tested values for 𝑃 consistently with estimates of neurophysiological 

data, where the evidence indicates that communication delays can be as long as 40-50 ms (Ringo et 

al., 1994). However, using a larger value of 𝑃 could make challenging the tuning of these simulations 

for appropriate values of the autoregressive coefficients 𝐀𝑝 due to numerical instabilities, and it will 

force to use very small values that are difficult to estimate. Correspondingly to the above simulation 

settings, here we used the autoregressive matrices as presented below for each case (shown from left 

to right inside curly brackets, for lag=1,…,5). The synthetic MEG/EEG signals were generated in a 

similar approach to that described in the literature (Liang et al., 2022; Liu et al., 2019; Sanchez-Bornot 

et al., 2018) but using 𝑆𝑁𝑅 = 20 and 𝑆𝑁𝑅 = 5 decibels (dB), respectively, for these two cases. 

1) Resting state simulation: 

                  



𝐀 =

{
 
 

 
 

[
 
 
 
 
1.356

0.8
0

0

0

0

1.356
0

0

0

0

0
1.356

0

0

0

0
0

1.5

0

0

0
0

0

1.5]
 
 
 
 

,

[
 
 
 
 
−0.49

−0.8
0.8

0

0

0

−0.49
0

0

0

0

0
−0.49

0

0

0

0
0

−0.75

0

0

0
0

0

−0.75]
 
 
 
 

,   

[
 
 
 
 
0

0
−0.8

0.8

0

0

0
0

0

0

0

0
0

0

0

0

0
0

0

0

0

0
0

0

0]
 
 
 
 

,

[
 
 
 
 
0

0
0

−0.8

0

0

0
0

0

0

0

0
0

0

0

0

0
0

0

0

0

0
0

0

0]
 
 
 
 

,

[
 
 
 
 
0

0
0

0

0

0

0
0

0

0

0

0
0

0

0

0

0
0

0

0.1

0

0
0

−0.1

0 ]
 
 
 
 

}
 
 

 
 

, 

2) Event related simulation: 

𝐀 =

{
 
 

 
 

[
 
 
 
 
0.8

0
0

0

0

0

0.8
0

0

0

0

0
0.8

0

0

0

0
0

0.8

0

0

0
0

0

0.8]
 
 
 
 

,

[
 
 
 
 
−0.5

0
0

0

0

0

−0.5
0

0

0

0

0
−0.5

0

0

0

0
0

−0.5

0

0

0
0

0

−0.5]
 
 
 
 

,  

[
 
 
 
 
0

1.0
0

0

0

0

0
0

0

0

0

0
0

0

0

0

0
0

0

0

0

0
0

0

0]
 
 
 
 

,

[
 
 
 
 
0

0
0

0

0

0

0
0

0

0

0

0
0

0

0

0

0
0

0

1.0

0

0
0

−1.0

0 ]
 
 
 
 

,

[
 
 
 
 
0

0
0

0

0

0

0
0

0

0

0

0
0

0

0

0

0
0

0

0

0

0
0

0

0]
 
 
 
 

}
 
 

 
 

. 

More precisely, for the event related simulation, we generated 80 synthetic datasets by running 20 

Monte Carlo replications based on different random locations of the brain sources in four different 

conditions, which involved the 2x2 combinations of simulations considering either two or five sources 

with an activity patch extension of 6 or 15 cm2. For clarity, each dataset contains two 3D matrices of 

dimension equals to #𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 × #𝑆𝑎𝑚𝑝𝑙𝑒𝑠 × #𝐸𝑝𝑜𝑐ℎ𝑠, for the synthetic generated latent and 

observed time series. The simulation based on five dipoles uses exactly the same autoregressive 

matrix above, whereas the two source simulation uses the same matrix but reduced to the first two 

regions (rows). Notice that for the autoregressive matrices, there is not really interaction for the 5-th 

lag as the entries are zero in the matrix. However, the zero-entries were set there explicitly to highlight 

that all 𝑝 = 1,… ,5 will be estimated. 

Finally, to resemble better the actual conditions in which human experiments are conducted, the 

event-related data was generated as a continuous EEG signal where as many continuous segments as 

trials were generated. Each segment duration was set to 750 ms, in which a random stimulus onset 

occurred between 200 and 500 ms and the different connections among regions were programmed 

to become active after each stimulus onset, while modulated by a Hanning’s window of 120 ms length. 

Moreover, a random jitter was represented using the normal distribution with mean ± std equals to 

20 ± 10 ms to represent the dynamics build up mediating between stimulating a region with an input 

pulse and the activation of its outgoing connections. The onset signal was modelled as a single square 

pulse with height equals to 0.3 and duration of 24 ms, which was added to the model-generated inner 

dynamics. Whereas in the two-ROIs simulation only the first region is stimulated externally, in the five-

ROIs case the regions 1 and 4 are stimulated with inter-pulse interval of 48 ms. For the analysis of 

these datasets, the continuously generated EEG signals were epoched using the time onset values, in 

the interval −150 ≤ 𝑡 ≤ 282 ms around the stimulus onset, and the rest of the analysis was 

performed as it is done with real data. In the comparison study discussed in the results section, due 

to the aforementioned RAM limitations, our proposed method used only the epoched data in the 

interval (50; 200] ms (𝑇 = 18 samples), which included the simulated intraregional communication, 

whereas the other evaluated inverse solution methods used the complete epoched data. 

                  



Algorithm optimization to speed calculations in large-scale analysis 
Using 𝑇 < 50 in the large-scale simulations above can be seen as a critical limitation given the vast 

number of parameters. However, we can exploit a computational trick to run our calculations with a 

much larger number of samples. As usual in event-related studies, many trials or epochs are recorded 

for the same experimental conditions. Therefore, we adapt to this situation by running many 

replications (epochs) with the settings defined above. Accordingly, we implemented the MPSS 

optimisation function (see Eqs. (14, 15)) for multiple epochs as follows: 

𝐹𝑘 =
1

2𝑇𝐸
(
∑ ∑ 𝐿𝑡

(𝑘)
‖𝐲𝑡

(𝑒) − 𝐁𝐱𝑡
(𝑒)
‖
2

2
𝑇
𝑡=1

𝐸
𝑒=1 + 𝜆∑ ∑ ‖𝐱𝑡

(𝑒) −∑ 𝐀𝑝𝐱𝑡−𝑝
(𝑒)𝑃

𝑝=1 ‖
2

2
𝑇
𝑡=𝑃+1

𝐸
𝑒=1

+𝜆∑ ∑ ‖𝐱𝑡‖2
2𝑃

𝑡=1
𝐸
𝑒=1 + 𝜆2

(𝑥)‖𝐗‖𝐹
2 + 𝜆2

(𝑎)‖𝐀‖𝐹
2

), (22) 

𝐱̂(𝑘), 𝐀̂(𝑘) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝐱,𝐀

𝐹𝑘 (𝐱, 𝐲, 𝐀, 𝐁, 𝜆, 𝜆2
(𝑥)
, 𝜆2
(𝑎)
); for 𝑘 = 1,… , 𝐾, (23) 

where 𝐸 is the number of epochs (𝐸 = 200 in simulations). In this case, we state the optimisation 

problem based only on the hyperparameters 𝜆, 𝜆2
(𝑥)

, and 𝜆2
(𝑎)

. The use of sparse penalty functions  

(corresponding to using 𝜆1
(𝑎) or 𝜆1

(𝑥)) is presently ignored in our study due to the lack of an efficient 

implementation for large-scale analysis. It should be noted that despite the MVAR matrices being fixed 

during each simulated condition, the generated time series 𝐱𝑡
(𝑒)

, 𝑒 = 1,… , 𝐸, change randomly and 

independently across the epochs. 

Interestingly, the last optimisation problem can be solved very efficiently if we run the K-fold partition 

only for the time dimension, i.e., a unique cross-validation partition of the temporal indices for all 

epochs (coded by the loss function 𝐿𝑡
(𝑘) in Eq. (22)). Notice that the dynamic variables {𝐱𝑡

(𝑒)
}, 𝑒 =

1,… , 𝐸, can be estimated separately for each epoch as these are independent measurements when 

conditioning on the estimated autoregressive matrices. However, more conveniently, we can modify 

Eq. (17) to estimate the time series in closed form, as follows: 

𝐗̂1:𝐸
(𝑖+1) = (𝐃𝐿

𝑇𝐃𝐿⨂𝐁
𝑇𝐁+ 𝜆(𝐈𝑇𝑁 −𝐖)

𝑇(𝐈𝑇𝑁 −𝐖))
−1
(𝐃𝐿

𝑇𝐃𝐿⨂𝐈𝑁)𝐙1:𝐸 (24) 

where 𝐗̂1:𝐸
(𝑖+1)

= [𝐗̂𝑉
(𝑖+1,𝑒=1)

, … , 𝐗̂𝑉
(𝑖+1,𝑒=𝐸)

] and 𝐙1:𝐸 = [𝑣𝑒𝑐(𝐁
𝑇𝐘(𝑒=1)),… , 𝑣𝑒𝑐(𝐁𝑇𝐘(𝑒=𝐸))] 

(matrices 𝐗̂1:𝐸
(𝑖+1) and 𝐙1:𝐸 are both of 𝑁𝑇 × 𝐸 dimensions). This trick has tremendous advantages as 

the inverse of the 𝑁𝑇 × 𝑁𝑇 matrix is the most computationally expensive operation. While Eq. (24) 

keeps the same inverse matrix order as in Eq. (17), on the other hand, the number of samples can be 

increased considerably by generating a higher number of epochs without significantly increasing the 

computational cost. 

Performance metrics to evaluate the quality of inverse solutions 
Here, we present the quantitative measures used to evaluate the different tested inverse solution 

methods in comparison to the solution estimated by our proposed MPSS models. For comparison 

purposes, we used the relative root squared error (RRSE) to quantify the temporal accuracy of 

estimated signals, and the receiver operating characteristic (ROC) curve to quantify their spatial 

accuracy (Grova et al., 2006; Liang et al., 2022; Liu et al., 2019). Regarding the latter, we also proposed 

a modified version for the ROC calculation which is introduced below. The RRSE stat can be calculated 

as follows: 

                  



𝑅𝑅𝑆𝐸 = √
∑ ∑ (𝑥̃𝑖𝑡

𝐸𝑅𝑃−𝑦̃𝑖𝑡
𝐸𝑅𝑃)

2𝑇
𝑡=1

𝑁
𝑖=1

∑ ∑ (𝑥̃𝑖𝑡
𝐸𝑅𝑃)

2𝑇
𝑡=1

𝑁
𝑖=1

, or 𝑅𝑅𝑆𝐸 = √
∑ ∑ ∑ (𝑥̃𝑖𝑡𝑒

𝑇𝑅𝐿−𝑦̃𝑖𝑡𝑒
𝑇𝑅𝐿)

2𝐸
𝑒=1

𝑇
𝑡=1

𝑁
𝑖=1

∑ ∑ ∑ (𝑥̃𝑖𝑡𝑒
𝑇𝑅𝐿)

2𝐸
𝑒=1

𝑇
𝑡=1

𝑁
𝑖=1

 (26) 

where 𝐗𝑇𝑅𝐿, 𝐘𝑇𝑅𝐿 ∈ ℝ𝑁×𝑇×𝐸 and 𝐗𝐸𝑅𝑃, 𝐘𝐸𝑅𝑃 ∈ ℝ𝑁×𝑇 are the 3D and 2D matrices containing the 

simulated and estimated event related data, for the original trial-basis signals (𝐗𝑇𝑅𝐿) and after 

averaging to obtain the ERP components (𝐗𝐸𝑅𝑃). However, these signals have been normalized before 

performing the RRSE calculation (e.g., 𝑥̃𝑖𝑡
𝐸𝑅𝑃 = 𝑥𝑖𝑡

𝐸𝑅𝑃 max
𝒾𝓉
{𝑥𝑖𝑡
𝐸𝑅𝑃}⁄ ) to remove scale differences 

between the ground truth and estimated signals. These two versions for 2D and 3D matrices are 

considered as the SSALS/HGDALS solutions are 3D matrices; whereas, other methods produce ERP 

component estimates, such as the methods included in the comparison from the SPM toolbox (Friston 

et al., 2008; López et al., 2014; Penny et al., 2011). We also define here 𝑞̂𝑖 = (∑ 𝑥𝑖𝑡
2𝑇

𝑡=1 )
1 2⁄

 and 𝑞̃𝑖 =

𝑞̂𝑖 max{𝑞̂1, … , 𝑞̂𝑁}⁄  as each source estimated and normalized energy, where the latter normalized 

measure will be used next. 

About the ROC calculation, we agree with Grova et al. (2006) that a modification to the calculation of 

the ROC curve is necessary to address the case of brain inverse solutions. Grova et al. (2006) pointed 

out the issue of the imbalance between the number of active sources in simulations (known ground 

truth), in the order of dozens or hundreds, and inactive sources, in the order of thousands. However, 

we observed empirically with a Monte Carlo analysis that this does not have a clear negative impact 

in the calculation of ROC statistics for random solutions with different smooth/sparse characteristics 

(Supp. Material Fig 1). To deal with this issue, Grova et al. (2006) proposed to randomly drawn the 

same amount of inactive as active sources, first sampling only from nearby inactive sources to the 

ground truth and then only from distant sources, for subsequently calculating the ROC and its area 

(AROC) stats for the active and selected nearby/faraway sources, separately, which they called 

𝐴𝑅𝑂𝐶𝑐𝑙𝑜𝑠𝑒 and 𝐴𝑅𝑂𝐶𝑓𝑎𝑟. These values are finally averaged to produce the single statistic 𝐴𝑅𝑂𝐶 =
1

2
(𝐴𝑅𝑂𝐶𝑐𝑙𝑜𝑠𝑒 + 𝐴𝑅𝑂𝐶𝑓𝑎𝑟) (Grova et al. (2006)’s Eq. (11)). In general, this modification considers that 

a false positive identification for a nearby estimated source is not as critical as those committed for a 

faraway estimate, given that it gives both errors the same weight and there is a much higher number 

of distant sources than there are close sources. Below, we consider a different modification of the 

ROC statistic that implements this idea from a more robust mathematical perspective. 

Let 𝒰 = {1,… ,𝑁} be the universe set containing all the possible source indices and 𝒜 the subset of 

the ground truth active indices; thus, its complement 𝒜𝐶 contains the ground truth inactive source 

indices. Moreover, for a threshold value 0 ≤ 𝜃 ≤ 1, the estimated active subset can be defined as 

𝒜̂(𝜃) = {𝑖 ∶  𝑞̃𝑖 ≥ 𝜃}. Using these definitions, the true/false positives (TP/FP) and true/false negatives 

(TN/FN) can be defined as in Table 3. 

Table 3: Contingency table for classical ROC analysis (∩ is the intersection symbol and |∙| represents the subset cardinality). 

𝑇𝑃(𝜃) = |𝒜 ∩ 𝒜̂(𝜃)| 𝐹𝑁(𝜃) = |𝒜 ∩ 𝒜̂𝐶(𝜃)| 

𝐹𝑃(𝜃) = |𝒜𝐶 ∩ 𝒜̂(𝜃)| 𝑇𝑁(𝜃) = |𝒜𝐶 ∩ 𝒜̂𝐶(𝜃)| 

In contrast to the representation in Table 3, for convenience, we can represent these formulas using 

equivalent expressions. For example, corresponding to the false positive representation, we have 

𝐹𝑃(𝜃) = ∑ 𝔗(𝑖 ∈ 𝒜𝐶  & 𝑖 ∈ 𝒜̂(𝜃))𝑁
𝑖=1 , where “∈” and “&” are the set theory “belong to” and logical 

AND operators, and 𝔗(∙) is an indicator function valued to 1 if the argument is true and 0 otherwise. 

Finally, the proposed modification of the AROC statistics, called here area under weighted ROC 

                  



(AWROC) statistics, can be calculated as in the standard case, but using a weighted measure to 

calculate the false positive instead, as follows: 

𝐹𝑃(𝜃) =
1

𝜇
∑ 𝔗(𝑖 ∈ 𝒜𝐶  & 𝑖 ∈ 𝒜̂𝐶(𝜃))𝑁
𝑖=1  𝜉𝐼(𝑖), (25) 

where 𝜇 = ∑ 𝜉𝐼(𝑖)
𝑁
𝑖=1 |𝒜𝐶|⁄  is a normalization constant, and 𝜉𝐼(𝑖) is a function that evaluates the 

criticality of the false positive errors (we use explicitly the symbol 𝜉𝐼 in the notation as it may resemble 

the definition of Type I error in classical statistical analysis) by taking into consideration how far the 

source that is falsely identified is from the ground truth. That is, a false positive committed for a nearby 

source must be a much less serious statistical offense than the ones committed for distant sources. 

The normalization constant 𝜇 guarantees that the AWROC is an unbiassed statistics for random 

solutions, as shown empirically (Supp. Material Fig 1). Fig. 2 shows an example for the five simulated 

sources shown in Fig. 1, where the Minimum Euclidean Distance (MED) of each 𝑖-th point of the brain 

cortical surface, with respect to the five ground truth sources, is shown together with the 

corresponding cortical distribution of 𝜉𝐼(𝑖). The latter is calculated using the straightforward 

normalized formula: 

𝜉𝐼(𝑖) = log10 (1 + 9𝑀𝐸𝐷(𝑖) max
𝑗=1,…,𝑁

{𝑀𝐸𝐷(𝑗)}⁄ ), (26) 

 

Figure 2: Minimum Euclidean Distance (MED) and measure of false positive errors according to the distance to the ground 
truth sources shows as distributed across the brain cortical surface. Top view: left hemisphere. Bottom view: right 
hemisphere. 

Results 

Solving straightforward state-space models with proposed algorithms 
We evaluated the accuracy of proposed algorithms exhaustively using the small-scale simulations and 

different SNR conditions (see Material Methods) using 100 Monte Carlo replications, with the same 

simulated data used for all the algorithms. The comparison is based on the RSE statistic (Material 

Methods), as well as the evaluation of the autoregressive coefficient estimation and the algorithmic 

computational time. 

                  



Analysis for simulated bivariate time series 
First, we evaluate the proposed methods with the simplest small-scale model, i.e., the bivariate model 

introduced above. For this simulation, backpropagation converges and always recovers solutions 

nearby the ground truth for the close to noiseless (𝜎𝑜 = 0.1) scenario, as evaluated for the Monte 

Carlo replications. Particularly, using the RSE statistics, the error percentages of estimated bivariate 

time series 𝐱̂𝑡 were 2.20±0.35% (mean ± mean’s standard error bars) and 1.10±0.19%, respectively for 

the first and second latent variable, for the 𝜎𝑜 = 0.1 scenario (algorithm converged after 

121,907.51±312.23 iterations, average computational time of 53 seconds/replica, with GD step size 

𝛼 = 1, momentum 𝜇 = 0.99); 27.85±6.76% and 14.54±3.03% for the 𝜎𝑜 = 0.5 scenario 

(13,468.16±348.92 iterations, 5.58 sec/replica, 𝛼 = 1, 𝜇 = 0.99); and 87.41±6.22% and 55.54±6.86% 

for the 𝜎𝑜 = 1.0 scenario (202,956.8±8,808.83 iterations, 82.66 sec/replica, 𝛼 = 10−2, 𝜇 = 0.99, 

𝑡𝑜𝑙 = 10−5). As observed, convergence was faster for an intermediate level of noise and the GD step 

size must be reduced to 𝛼 = 10−2 for the noisier case due to numerical instability. For the noisier 

case, the convergence tolerance parameter must be increased from the standard 𝑡𝑜𝑙 = 10−6 to 10−5 

due to the large number of iterations needed to achieve convergence. We also observed a large 

variability in the number of iterations (error bars = ±8,808.83) due to the initial random conditions 

which may have a more dramatic impact on convergence in this case. 

In contrast, over the same Monte Carlo replications, the SSGD algorithm’s RSE statistic for the 

estimation of the two latent variables were 2.20±0.35% and 1.10±0.19% for the 𝜎𝑜 = 0.1 scenario 

(10,461.00±9.19 iterations, 0.50 sec/replica); 27.85±6.76% and 14.54±3.03% for the 𝜎𝑜 = 0.5 scenario 

(16,679.00±297.13 iterations, 0.79 sec/replica); 89.32±5.19% and 57.40±7.25% for the 𝜎𝑜 = 1.0 

scenario (133,066.14±20,493.18 iterations, 6.27 sec/replica). For all the SSGD analysis, we used 𝛼 =

1, 𝜇 = 0.99, and 𝑡𝑜𝑙 = 10−6. Whereas, for the SSALS algorithm, we obtained an RSE statistic of 

2.20±0.35% and 1.10±0.19% for the 𝜎𝑜 = 0.1 scenario (3.86±0.04 iterations, 1.36 msec/replica); 

27.76±6.66% and 14.51±3.00% for the 𝜎𝑜 = 0.5 scenario (16.06±0.59 iterations, 5.09 msec/replica); 

90.12±5.42% and 56.18±6.79% for the 𝜎𝑜 = 1.0 scenario (1,155.70±75.00 iterations, 0.33 sec/replica). 

For all the simulations above, the models were evaluated using 𝜆 = 𝜎𝑜
2 𝜎𝑠

2⁄  as in the naïve case. For 

the SSGD algorithm, the other hyperparameters were set to zero, i.e., 𝜆2
(𝑎)
= 𝜆1

(𝑥)
= 𝜆1

(𝑎)
= 0, and 

similarly for the SSALS algorithm 𝜆2
(𝑥) = 𝜆2

(𝑎) = 0. Unsurprisingly, both SSGD and SSALS algorithms 

converged to the same solutions as backpropagation for the same replications in the less noisier 

scenarios (𝜎𝑜 = 0.1 and 𝜎𝑜 = 0.5), as corroborated by examining the RSE statistic (see also Table 4), 

but with more steady and faster convergence for SSGD, as compared to backpropagation, and with 

overall lightning (quadratic) convergence for SSALS in comparison to the other algorithms. 

Interestingly, in comparison with backpropagation, which also relies on the GD technique, the SSGD 

algorithm showed much better numerical stability. For example, without momentum (𝜇 = 0), SSGD 

also converged steadily although a bit slower, whereas backpropagation convergence was much 

slower as we have to set 𝛼 = 10−3 or lower to avoid numerical instability. 

In general, it should be noted that the RSE statistic increases dramatically for low SNR for all the 

algorithms, which may be a sign of overfitting. This trend occurs despite using 𝜆 = 𝜎𝑜
2 𝜎𝑠

2⁄  (naïve 

estimator) as acknowledging the model noise exactly for known variances (Hastie et al., 2001). 

Particularly, using this parameter in the implementation of our backpropagation algorithm (see Table 

1) is equivalent to implementing the weight decay technique (Yang and Wang, 2020). Although we did 

not consider a similar regularization term for the estimation of the autoregressive matrices in this 

algorithm, the above comparison is fair as the corresponding hyperparameters were turned to zero in 

the other algorithms. Complementarily to these analyses, Table 4 shows the outcome for the 

                  



estimated autoregressive coefficients for each SNR scenario and algorithms, showing clearly that the 

parameter bias increases as the SNR decreases. Here, we consider that the more faithful estimates 

are provided by the SSALS algorithm due to its superior numerical stability and quadratic convergence. 

Therefore, this outcome may also suggest that the SSGD algorithm is superior to backpropagation in 

these simulations, as it converges closer to the SSALS solutions. 

Table 4: Mean ± error bars’ solutions for 100 Monte Carlo replications of the bivariate (lag=1) simulation for each SNR 
scenario using Eqs. (1, 2). The error bars are calculated by estimating the standard deviation of the Monte Carlo calculated 
samples and then dividing this value by the squared root of the number of Monte Carlo simulations. The values of simulation 
parameters are 𝑇 = 200, 𝑀 = 5, 𝑁 = 2, and 𝑃 = 1. From left to right the ground-truth values of the autoregressive matrix 
are shown, together with the corresponding solutions for 𝜎𝑜 = 0.1, 𝜎𝑜 = 0.5, and 𝜎𝑜 = 1. We set 𝜎𝑠 = 1 in all simulations. 
The solutions are provided for the calculations based on the backpropagation, SSGD and SSALS algorithms, as presented from 
top-to-bottom rows in this order. 

Ground 
Truth 

𝝈𝒐 = 𝟎. 𝟏 𝝈𝒐 = 𝟎. 𝟓 𝝈𝒐 = 𝟏 

[
−0.5 0
0.7 −0.5

] 

[
−0.51 ± 0.06 0.00 ± 0.04
0.72 ± 0.06 −0.50 ± 0.05

] [
−0.48 ± 0.21 −0.03 ± 0.06
1.24 ± 0.33 −0.53 ± 0.12

] [
1.73 ± 1.76 −0.78 ± 1.14
6.66 ± 5.08 −2.04 ± 1.75

] 

[
−0.51 ± 0.06 0.00 ± 0.04
0.72 ± 0.06 −0.50 ± 0.05

] [
−0.47 ± 0.21 −0.03 ± 0.06
1.24 ± 0.33 −0.53 ± 0.12

] [
3.22 ± 2.53 −1.45 ± 1.79
12.41 ± 4.87 −3.52 ± 2.49

] 

[
−0.51 ± 0.06 0.00 ± 0.04
0.72 ± 0.06 −0.50 ± 0.05

] [
−0.48 ± 0.21 −0.03 ± 0.06
1.23 ± 0.33 −0.53 ± 0.11

] [
3.56 ± 2.23 −1.64 ± 1.52
11.58 ± 4.03 −3.85 ± 2.19

] 

Analysis for simulated three-variate time series 
To further compare these algorithms, in this section we used the three-variate simulation and set the 

hyperparameter values as in the naïve estimators for each SNR scenario. Only SSGD and SSALS 

solutions are presented here as backpropagation convergence was significantly slower and less stable 

for the Monte Carlo replications. Moreover, we ignored the use of momentum for the SSGD algorithm 

(𝜇 = 0) due to numerical instability. For this method, the corresponding RSE statistics for the three 

latent variables were 2.50±0.06%, 1.99±0.06%, and 1.97±0.06% for the 𝜎𝑜 = 0.1 scenario 

(716,605.92±185,016.49 iterations, 88.82 sec/replica, 𝛼 = 1 and 𝑡𝑜𝑙 = 10−6); 67.35±1.38%, 

59.14±0.95%, and 52.38±0.35% for the 𝜎𝑜 = 0.5 scenario (686,235.88±33,749.76 iterations, 84.01 

sec/replica, 𝛼 = 10−3 and 𝑡𝑜𝑙 = 10−5); 74.08±1.39%, 66.28±1.07%, and 54.38±0.36% for the 𝜎𝑜 =

1.0 scenario (617,378.55±51,054.21 iterations, 73.86 sec/replica, 𝛼 = 10−3 and 𝑡𝑜𝑙 = 10−5). Notice 

that we increased the tolerance due to slow convergence and reduced 𝛼 to 10−3 in the noisier 

scenarios due to numerical instability.  In contrast, for the SSALS algorithm, the RSE statistics were 

2.42±0.06%, 1.88±0.05%, and 1.86±0.05 for the 𝜎𝑜 = 0.1 scenario (24.55±2.63 iterations, 0.04 

sec/replica); 55.11±1.34%, 42.42±0.76%, and 39.61±0.62% for the 𝜎𝑜 = 0.5 scenario 

(3,757.89±337.23 iterations, 6.68 sec/replica); 150.54±4.18%, 83.3±1.69%, and 62.14±1.21% for the 

𝜎𝑜 = 1.0 scenario (8,052.59±579.40 iterations, 16.80 sec/replica). 

Consistent with the previous analysis, we observe that 𝐱̂𝑡 gradually diverged as the SNR decreased, as 

reflected by the RSE statistic. Moreover, as shown in Table 5, the same issue occurred with the 

estimated autoregressive coefficients. For the second simulation, in comparison to the first 

simulation, we had to deal with the worst numerical problems for the SSGD algorithm that forced a 

reduction of the GD step size and an increase of the convergence tolerance with increasingly more 

noise. Interestingly, for the 𝜎𝑜 = 0.5 scenario we rerun the SSGD algorithm for the same Monte 

replication but with increased tolerance 𝑡𝑜𝑙 = 10−4 and 𝛼 = 1, and obtained different RSE values for 

the three latent variables: 44.74±1.14%, 30.1±0.64%, and 25.25±0.53%. These values are better than 

those obtained previously with more strict optimization parameters, which may have resulted in 

overfitting. Notice that increasing the SSGD algorithm tolerance value is equivalent to inducing early 

                  



stopping, which is an optimization technique used for training ANNs to avoid overfitting. Also observe 

in Table 5 that the solutions are more disparate for the SSALS algorithm in the noisier scenarios. If the 

SSALS algorithm more accurately captures the numerical solution due to its apparent superior 

convergence, then it is expected also that it will be more affected by overfitting. 

Table 5: SSGD and SSALS mean ± error bars’ solutions for 100 Monte Carlo replications of the three-variate (lag=1,2,3) 
simulation for each SNR scenario, using Eqs. (1, 2). The values of simulation parameters are 𝑇 = 240, 𝑀 = 5, 𝑁 = 3, and 
𝑃 = 3. (I) The simulation’s ground-truth autoregressive coefficients were obtained according to Stokes and Purdon(Stokes 
and Purdon, 2018), presented between brackets (from the left to right) correspondingly to lag=1,2,3, in this order. (II) From 
top-to-bottom rows are shown the corresponding solutions for the SSGD algorithm, for 𝜎𝑜 = 0.1, 𝜎𝑜 = 0.5, and 𝜎𝑜 = 1 in 
this order. We set 𝜎𝑠 = 1 in all simulations. (III) Similarly, but for the solutions estimated by the SSALS algorithm. 

I) Ground-truth autoregressive coefficients 

𝐀 = {[
−0.9000 0 0
−0.3560 1.2124 0

0 −0.3098 −1.3856
] , [
−0.8100 0 0
0.7136 −0.4900 0
0 0.5000 −0.6400

] , [
0 0 0

−0.3560 0 0
0 −0.3098 0

]} 

II) SSGD estimated autoregressive coefficients 

{[
−1.00 ± 0.06 −0.32 ± 0.12 0.05 ± 0.09
−0.22 ± 0.02 1.57 ± 0.05 −0.21 ± 0.04
0.57 ± 0.09 −0.47 ± 0.13 −2.05 ± 0.09

] , [
−0.77 ± 0.17 0.60 ± 0.28 −0.01 ± 0.21
0.91 ± 0.05 −1.01 ± 0.10 −0.24 ± 0.09
1.17 ± 0.22 1.19 ± 0.29 −1.81 ± 0.21

] , [
0.55 ± 0.39 −0.38 ± 0.16 −0.04 ± 0.13
−0.65 ± 0.13 0.26 ± 0.06 −0.07 ± 0.05
1.60 ± 0.44 −0.80 ± 0.19 −0.65 ± 0.13

]} 

{[
−0.39 ± 0.03 0.64 ± 0.03 −0.97 ± 0.02
−0.53 ± 0.05 1.42 ± 0.03 −1.27 ± 0.06
−0.24 ± 0.04 0.92 ± 0.03 −1.38 ± 0.04

] , [
−1.36 ± 0.03 1.14 ± 0.03 0.33 ± 0.03
−0.65 ± 0.05 1.11 ± 0.04 −0.06 ± 0.06
−1.18 ± 0.05 1.42 ± 0.04 0.08 ± 0.04

] , [
0.87 ± 0.03 −0.85 ± 0.02 0.15 ± 0.03
0.41 ± 0.06 −1.22 ± 0.04 0.84 ± 0.07
0.64 ± 0.05 −1.15 ± 0.04 0.62 ± 0.06

]} 

{[
−0.44 ± 0.06 1.03 ± 0.05 −1.16 ± 0.06
−0.54 ± 0.10 1.51 ± 0.08 −1.41 ± 0.13
−0.25 ± 0.06 1.15 ± 0.06 −1.51 ± 0.08

] , [
−1.70 ± 0.06 1.07 ± 0.07 0.66 ± 0.08
−0.78 ± 0.11 1.34 ± 0.08 −0.16 ± 0.13
−1.50 ± 0.07 1.44 ± 0.07 0.30 ± 0.08

] , [
1.27 ± 0.06 −0.73 ± 0.06 −0.39 ± 0.08
0.43 ± 0.11 −1.27 ± 0.08 0.88 ± 0.14
0.85 ± 0.07 −1.10 ± 0.07 0.35 ± 0.09

]} 

III) SSALS estimated autoregressive coefficients 

{[
−1.07 ± 0.04 −0.14 ± 0.08 0.16 ± 0.06
−0.23 ± 0.02 1.49 ± 0.03 −0.22 ± 0.04
0.40 ± 0.05 −0.28 ± 0.08 −1.92 ± 0.05

] , [
−1.02 ± 0.09 0.18 ± 0.15 0.24 ± 0.13
0.94 ± 0.03 −0.87 ± 0.06 −0.29 ± 0.07
0.74 ± 0.11 0.70 ± 0.16 −1.50 ± 0.12

] , [
−0.03 ± 0.22 −0.13 ± 0.08 0.12 ± 0.08
−0.50 ± 0.08 0.18 ± 0.03 −0.11 ± 0.04
0.82 ± 0.23 −0.43 ± 0.09 −0.45 ± 0.08

]} 

{[
−4.14 ± 1.75 8.17 ± 2.76 −1.64 ± 3.14
−5.94 ± 2.17 2.91 ± 1.25 6.14 ± 1.71
−1.16 ± 1.99 1.33 ± 1.03 0.36 ± 1.24

] , [
−14.08 ± 2.20 −10.19 ± 7.05 12.11 ± 11.22
2.06 ± 1.60 2.44 ± 3.45 27.26 ± 6.23
0.64 ± 1.33 8.58 ± 4.78 5.65 ± 4.15

] , [
−9.73 ± 3.47 9.43 ± 11.84 −2.63 ± 15.44
−14.11 ± 3.09 −36.49 ± 6.78 50.76 ± 9.51
−6.58 ± 3.21 −18.76 ± 8.13 25.07 ± 10.89

]} 

{[
−2.03 ± 3.44 18.79 ± 5.72 9.52 ± 5.26
3.76 ± 4.12 1.14 ± 2.52 10.00 ± 4.73
−2.16 ± 2.88 1.84 ± 2.10 0.16 ± 2.09

] , [
−14.66 ± 5.14 3.30 ± 16.54 58.31 ± 21.84
−16.54 ± 5.40 1.51 ± 9.07 58.00 ± 19.03
−8.16 ± 3.61 −9.14 ± 7.38 16.74 ± 9.22

] , [
1.18 ± 8.16 −50.23 ± 27.39 55.59 ± 32.61
−1.40 ± 6.68 −57.34 ± 14.40 74.81 ± 16.95
−12.70 ± 4.36 −7.21 ± 10.71 20.56 ± 13.86

]} 

The problem of overfitting in state-space models 
In  previous analyses, the effects of overfitting were more noticeable for the noisier cases of 𝜎𝑜 = 0.5 

and 𝜎𝑜 = 1, mainly for estimating the autoregressive coefficients as shown in Tables 4-5. In contrast, 

the corresponding estimated time series 𝐱̂𝑡 were very stable in most cases as reflected by the RSE 

statistic, and as demonstrated in Fig. 3 for a particular replication of the two small-scale simulations, 

where solutions were obtained using the SSGD algorithm. For this example, for the three-variate 

simulation, it was remarkable that the curves for estimated time series were very close to the ground 

truth even for low SNR (Fig. 3B). Nonetheless, the accuracy for the estimation of the time series can 

also be severely deteriorated for low SNR, as shown for the first simulation (Fig. 3A, last row plot). 

Therefore, an obvious observation is that the curse of overfitting increases for low SNR. In these cases, 

knowing the generative ground-truth model does not ensure a robust estimation (e.g., for the naïve 

estimator), as overfitting can occur either when estimating the state or space equation or balanced in 

between. For example, evaluating a model with a high degree of freedom (DOF) for the estimator 𝐱̂𝑡 

and a low DOF for the estimator 𝐀̂𝑝 (e.g., a sparse estimator of the autoregressive coefficients) can 

be as suboptimal as estimating a model with a low DOF for 𝐱̂𝑡 (e.g., a sparse spatiotemporal solution) 

and a high DOF for 𝐀̂𝑝, despite apparently adequate data fitting. Therefore, a pertinent question 

concerns how we select the correct model with real data in large-scale analysis. As the next section 

                  



demonstrates, a sensible answer is to use data-driven regularisation approach based on 𝐾-fold cross-

validation. 

 
Figure 3: Solving state-space models using the SSGD algorithm for bivariate (lag=1) and three-variate (lag=1,2,3) simulations 
for a single replication in different signal-to-noise ratio (SNR) scenarios: 𝜎𝑜 = 0.1, 𝜎𝑜 = 0.5, and 𝜎𝑜 = 1, corresponding to 
decreasing SNR levels, with fixed 𝜎𝑠 = 1 for all cases. Ground-truth autoregressive coefficients are shown in Tables 4-5 and 
dynamics are generated using Eqs. (1, 2). A) Bivariate simulation: from top to bottom are plotted the ground-truth dynamics 
𝒙𝑡  and estimated solutions 𝒙̂𝑡  for decreasing SNR levels. B) Three-variate simulation: similar to A. In both A and B, distinct 
colours differentiate the two- or three-variate time series curves in the legend for easier visual comparison between ground-
truth and estimated time series. C) Two additional solutions are calculated for the bivariate model for the same synthetic 
replication in the highest noise level (𝜎𝑜 = 1) but using MPSS models described by Eqs. (9, 10). Hyperparameters selection 
is based on the 𝐾 = 5 fold cross-validation with imputed data (K-fold CVI) procedure. The first regularized solution (top row) 

is obtained by adjusting only 𝜆 (line search), while the second solution (bottom row) is obtained by assessing both 𝜆 and 𝜆2
(𝑎)

 
(plane search), while the other hyperparameter values are set to zero. D) Cross-validation predicted error curves (Eq. (16) in 
Materials and Methods) are displayed for both line and plane searches on the left and right, respectively. The "optimal" 
hyperparameter values and corresponding minimum value of the curve and surface are highlighted with a filled circle marker 
(orange colour) and within the inset legends. The x-axis and x-y axes in these plots represent the hyperparameters' evaluated 
domains. The coloured surface employs the (Matlab) jet colormap for improved 3D visualization. 

Hyperparameter estimation using 𝑲-fold cross-validation based on imputed data 
Here, we demonstrate an extension of the 𝐾-fold cross-validation procedure, based on imputed data 

(𝐾-fold CVI, see Materials and Methods) to deal with the estimation of regularisation parameters in 

MPSS models, and thus illustrate how 𝐾-fold CVI can help to control overfitting. As a preliminary 

demonstration of our solution to the hyperparameter selection problem, Table 6 shows the SSGD and 

SSALS solutions for the bivariate simulation in the noisiest scenario (𝜎𝑜 = 1), for the more general 

MPSS framework. Solving MPSS models was demonstrated separately with the assessment of a single 

regularization parameter (i.e., estimating 𝜆), called here as line search, or additionally, also 

considering a penalty term over the estimated autoregressive coefficients (i.e., estimating 𝜆 and 𝜆2
(𝑎)), 

called here as plane search. For this case, for the SSGD algorithm, the RSE statistics for the two latent 

variables were 85.75±2.27% and 46.72±1.01% for the line search (14.79 sec/replica; line-grid 

dimension equals to 21 × 1); and 57.96±1.10% and 32.96±0.64% for the plane search (54.13 

                  



sec/replica; plane-grid dimension equals to 31 × 21). Whereas, for the SSALS algorithm, the RSE 

statistics were 84.19±2.13% and 46.18±1.03% (0.32 sec/replica; line-grid dimension equals to 21 × 1) 

for the line search, and 58.32± 1.08% and 33.14±0.63 (2.60 sec/replica; plane-grid dimension equals 

31 × 10) for the plane search analysis. 

In comparison, recall from above sections that for the same noise scenario and using the same Monte 

Carlo replications, the RSE statistics for the naïve estimators were 89.32±5.19% and 57.40±7.25%, and 

90.12±5.42% and 56.18±6.79%, respectively for the SSGD and SSALS algorithms (see Figs 3C,D as 

demonstration for a single replication using the SSGD algorithm). Therefore, we found that both line 

and plane search regularization solutions improved the naïve estimation, which is also evident from 

the comparison between the estimated autoregressive coefficients (compare outcomes in Tables 4 

and 6). The other clear observation is that regularization improved the algorithms’ computational 

performance (as shown by the measurements of seconds per replica or sec/replica above), as 

execution time remained more or less the same despite of having to estimate the solutions with a 

grid-search procedure, for 𝑘 = 5 folds, for each Monte Carlo replication. Here, we used the same 

SSALS’ Matlab code for calculating the naïve and the regularized solutions, but for the SSGD 

implementation we used its Matlab mex-function optimized implementation for the regularized case 

instead of the straightforward Matlab implementation, which was used before when comparing 

backpropagation vs SSGD, due to significantly faster computation with the mex function. Moreover, 

as expected from the regularization advantages, numerical stability of the SSGD algorithm also 

improved as their solutions were very close to SSALS, which was reflected in both the RSE values and 

estimated autoregressive coefficients (Table 6). 

Table 6: SSGD and SSALS mean ± error bars’ solutions for 100 Monte Carlo replications of the bivariate (lag=1) simulation for 
the noisiest scenario (𝜎𝑜 = 1), The solutions were obtained from solving MPSS models using a line search K-fold cross-

validation procedure to evaluate 𝜆 or, similarly, a plane search to evaluate both 𝜆 and 𝜆2
(𝑎)

. 

Method Line search Plane search 

SSGD [
−0.46 ± 0.01 0.03 ± 0.01
0.56 ± 0.02 −0.44 ± 0.01

] [
−0.18 ± 0.02 −0.02 ± 0.01
0.51 ± 0.01 −0.51 ± 0.01

] 

SSALS [
−0.46 ± 0.01 0.03 ± 0.01
0.57 ± 0.01 −0.44 ± 0.01

] [
−0.20 ± 0.02 −0.02 ± 0.01
0.50 ± 0.01 −0.51 ± 0.01

] 

For the three-variate simulation, in contrast, we ran two- and three-dimensional subspaces search for 

the lower SNR scenarios for a single replication as demonstration, and plotted the corresponding 

prediction error curves (Fig. 4). Here, the analysis was performed using only the SSGD algorithm 

because the SSALS algorithm does not implement L1-norm based sparse regularization. For clarity, for 

the naïve estimator for this replication, the corresponding values of the RSE statistic were 6.7%, 4.2%, 

and 1.8%, for 𝜎𝑜 = 0.5 (3,671,869 iterations, 𝛼 = 10−2), and 32.7%, 18.3%, and 7.5% for 𝜎𝑜 = 1 

(18,715,396 iterations, 𝛼 = 10−3). In comparison, for the regularised solutions, for the same replica 

in the 𝜎𝑜 = 0.5 scenario, the RSE statistics were 5.2%, 3.7%, and 1.5% (7,532 iterations), 5.5%, 3.8%, 

and 1.6% (7,912 iterations), and 5.4%, 3.7%, and 1.5% (7,559 iterations), for the solutions 

corresponding to the search over subspaces (𝜆, 𝜆2
(𝑎), 𝜆1

(𝑎)), (𝜆, 𝜆2
(𝑎)), and (𝜆, 𝜆1

(𝑎)), in this order. For 

the same replica in the 𝜎𝑜 = 1 scenario, the RSE statistics were 11.8%, 10.0%, and 3.8% (6,440 

iterations), 12.0%, 9.9%, and 3.8% (8,200 iterations), and 11.6%, 9.8%, and 3.7% (9,164 iterations), 

correspondingly. Table 7 shows the estimated autoregressive coefficients for each case. 

 

                  



Table 7: SSGD regularised solutions for the same replication of the three-variate simulation for the noisier scenarios (𝜎𝑜 =
0.5 and 𝜎𝑜 = 1). I) For 𝜎𝑜 = 0.5, from top to bottom, are shown the estimated autoregressive coefficients obtained by 

exploring the hyperparameters for the subspaces {(𝜆, 𝜆2
(𝑎)
, 𝜆1
(𝑎)
) |𝜆 ≥ 0, 𝜆2

(𝑎)
≥ 0, 𝜆1

(𝑎)
≥ 0}, {(𝜆, 𝜆2

(𝑎)
) |𝜆 ≥ 0, 𝜆2

(𝑎)
≥ 0}, 

and {(𝜆, 𝜆1
(𝑎)
) |𝜆 ≥ 0, 𝜆1

(𝑎)
≥ 0}, in this order. We used the hyperparameter values shown within the Fig. 4 inset legends. II) 

Likewise for the 𝜎𝑜 = 1 scenario. 

I) Autoregressive coefficients estimated for the 𝝈𝒐 = 𝟎. 𝟓 case 

𝜆, 𝜆2
(𝑎), 

𝜆1
(𝑎) 

𝐀 = {[
−0.94 0.06 0
−0.23 1.07 0
0 −0.07 −1.49

] , [
−0.7 0 0
0.79 −0.15 0
0 0 −0.71

] , [
0 −0.07 0
0 −0.24 −0.02

−0.39 −0.04 0.01
]} 

𝜆, 𝜆2
(𝑎) 𝐀 = {[

−0.84 0.07 −0.04
−0.38 1.03 0.08
0 −0.29 −1.24

] , [
−0.57 0.04 −0.07
0.56 −0.12 0.11
−0.04 0.35 −0.34

] , [
0.12 −0.13 −0.04
−0.21 −0.23 0.02
−0.20 −0.20 0.20

]} 

𝜆, 𝜆1
(𝑎) 𝐀 = {[

−0.93 0.03 0
−0.20 1.07 0
0 −0.06 −1.50

] , [
−0.71 0 0
0.81 −0.15 0
0 0 −0.73

] , [
0 −0.06 0
0 −0.23 −0.02

−0.39 −0.02 0
]} 

II) Autoregressive coefficients estimated for the 𝝈𝒐 = 𝟏 case 

𝜆, 𝜆2
(𝑎), 

𝜆1
(𝑎) 

𝐀 = {[
−0.89 0 −0.03
−0.29 1.02 0
0 0 −1.18

] , [
−0.71 0 0
0.61 0 0
0 0 −0.13

] , [
0 0 0
0 −0.33 0

−0.59 −0.09 0.35
]} 

𝜆, 𝜆2
(𝑎) 𝐀 = {[

−0.67 0.05 −0.03
−0.40 0.89 0.03
0.08 −0.26 −1.06

] , [
−0.41 0.09 −0.01
0.46 0.09 −0.03
0.01 0.36 −0.02

] , [
0.27 −0.16 −0.01
−0.11 −0.34 −0.06
−0.27 −0.23 0.38

]} 

𝜆, 𝜆1
(𝑎) 𝐀 = {[

−0.96 0 −0.02
0 1.17 0
0 0 −1.56

] , [
−0.75 0 0
0.97 −0.24 0
0 0 −0.78

] , [
0 −0.06 0
0 −0.20 0

−0.45 0 0
]} 

 
Figure 4: Prediction error curves obtained with the extension of 𝐾-fold cross-validation, based on imputed data (𝐾-fold CVI), 
technique as demonstrated for the three-variate simulation for the noisier scenarios: 𝜎𝑜 = 0.5 (A) and 𝜎𝑜 = 1 (B). From top 
to bottom, the plots show the curves for separated multigrid search analyses corresponding to the subspaces 

                  



{(𝜆, 𝜆2
(𝑎)
, 𝜆1
(𝑎)
) |𝜆 ≥ 0, 𝜆2

(𝑎)
≥ 0, 𝜆1

(𝑎)
≥ 0}, {(𝜆, 𝜆2

(𝑎)
) |𝜆 ≥ 0, 𝜆2

(𝑎)
≥ 0}, and {(𝜆, 𝜆1

(𝑎)
) |𝜆 ≥ 0, 𝜆1

(𝑎)
≥ 0}, in this order. In the 

plots in 2nd and 3rd rows, the x-y axes show the hyperparameter search domains, while the z-axis show the corresponding 
values of the prediction error function (Eq. (16) in Materials and Methods), which are also represented by the colour-coded 
surfaces using (Matlab) jet colourmap. Similarly, for the 1st row plots, the search domain is represented by all x-y-z axes for 
the three used hyperparameters. Here, the prediction error is a 4D hypersurface or volume, where values are shown for the 
cutting (transparent) orthogonal planes converging on the hypersurface minima. In all the plots, the minimum points are 
represented with an orange-filled circle marker attached to an inset legend, where it is shown the optimal hyperparameter 
values with the corresponding minimum value for the estimated cross-validation prediction error. 

Summarising our observations, firstly, regularisation has a noticeable positive effect on the estimation 

of better models, where improved solutions may be achieved by using more regularisation 

parameters. Additionally, the ℓ1-norm-based regularisation produced sparse estimators as expected 

(Table 7), which may enhance interpretation but at higher computational cost. Secondly, despite the 

increased computational time for hyperparameters search, regularisation improves the numerical 

condition for optimisation problems (Tikhonov and Arsenin, 1977), adding stability to the solutions 

and accelerating the convergence speed. However, searching the hyperparameter subspaces needs 

to be exercised with caution because the values can change abruptly, as shown by the ridged valley in 

Fig. 4B (bottom row). Mainly, they can change dramatically with low SNR level and high number of 

hyperparameters. Altogether, these results revealed the advantages of fitting MPSS models with the 

proposed data-driven regularisation approach. 

Finally, to compare against current methodologies, we also calculated the solutions for the 100 Monte 

Carlo replications of the two small-scale simulations using the standard and Bayesian implementation 

of state-space models provided in Matlab R2022a’s Econometric toolbox: functions “ssm.estimate” 

and “bssm.estimate” (James Durbin and Koopman, 2012). For the standard approach, our code used 

constrained (Matlab “fmincon” function) and interior-point search optimization and the covariance 

“sandwich” calculation method, as other settings failed to produce acceptable solutions (check scripts 

provided in Supp. Materials Tables 1-6). These constraints are not needed with the Bayesian solver as 

it assumes a priori Gaussian distributions for the parameters and the initial state variables and 

observation errors, for which covariances can be estimated using Monte Carlo simulations or 

importance sampling methods (James Durbin and Koopman, 2012). Note that our regularised methods 

produced comparable results to these approaches, although they may introduce unnecessary 

estimation bias if hyperparameters values are not appropriately selected (see Supp. Materials Tables 

7-8 and discussion therein). Clearly, our methods are significantly more computationally efficient than 

standard approaches, particularly evident for the three-variate simulations. However, this comparison 

depend on several factors such as the number of K folds, the granularity resolution of the search 

subspaces and the number of hyperparameters. We also did not consider the coding differences 

among these algorithms. Critically, an unquestionable advantage of our methods is that both 𝐱̂𝑡 and 

𝐀̂𝑝 estimates are produced. In contrast, state-of-the-art methods often calculate only estimators for 

𝐀̂𝑝, the initial state variables and observation errors. 

Solving large-scale MPSS models for synthetic MEG/EEG data 
For the large-scale simulations, we solved the brain source localization and functional connectivity 

problems simultaneously using MPSS models and SSALS/HGDALS algorithm for synthetic MEG/EEG 

signals, for conditions resembling resting state and event-related experiments (see Materials and 

Methods). In the first section below, a preliminary analysis is conducted, involving five simulated 

sources as ground truth, to show in great detail the apparent moderate accuracy of estimated sources 

and their estimated dynamics for a single replication. In this case, synthetic MEG signals were 

generated with 𝑆𝑁𝑅 = 20 dB. Whereas, in the second section, we conducted a Monte Carlo 

simulation to compare against state-of-the-art source localization methods. This latter analysis was 

                  



performed for synthetic EEG signals, generated with 𝑆𝑁𝑅 = 5 dB, and included 20 replications for 

random locations of either the two- or five-source scenarios combined with the simulation of activity 

patches of extension 6 or 15 cm2 to represent different scenarios. This total amount of 80 random 

replications were created for a more in depth validation analysis in a comparison against state-of-the-

art methods. 

Analysis for simulated resting state conditions 
Fig. 5 shows several outcomes for the first of these analysis using synthetic MEG signals. The data was 

generated for conditions resembling resting state with epoched data. Assuming weak stationary 

conditions as represented by the generative (MPSS) models, as usually done also for real data, 

estimating the MPSS model in this noisy and highly underdetermined scenario should allow us to  

estimate the hidden dynamics, including the FC networks. Particularly, we estimate minimum norm 

solutions together with the SSALS/HGDALS estimator as shown on the cortical surface for comparison 

purposes in Fig. 5A. This solution reveals the estimated source activity that more closely matched the 

ground-truth sources at the left-hemisphere occipital, temporo-parieto-occipital junction, and inferior 

temporal regions, and bilateral (symmetric) somatosensory cortices (top row). In contrast, using the 

minimum norm inverse solution (bottom row), which is approximately equivalent to the 

SSALS/HGDALS solution for a single iteration, it is more difficult to guess where the relevant brain 

activity takes place with so many salient spots in the solution. A less experienced observer can be 

confused by these solutions because of the high- and low-intensity patches that lie adjacent to each 

other, but an expert can realise that some of these patches with opposed polarity may correspond to 

the same underlying source. In general, as result of signal leakage in estimated sources, dipoles with 

opposite polarities tend to lie on the opposite walls surrounding a brain sulcus. Thus, they will have 

similar waveforms but opposite signs (see Supp. Materials Fig. 2). 

To better identify source locations, from the total amount of 𝑁 = 2004, we selected the 100 most 

salient estimated dipoles according to the average spectral energy (Supp. Materials Fig. 3). As shown 

in Fig. 5B, using four views of the cortical surface, we corroborated that these dipoles are in clusters 

around the five simulated ground-truth sources (see also Supp. Materials Fig. 4). Additionally, Fig. 5C 

shows that the estimated time series dynamics for these dipoles are also very close to the ground-

truth simulated epoched waveforms for each of the five simulated sources, after manually correcting 

for the polarity sign (Supp. Materials Fig. 2). As expected, the time series estimation may appear more 

accurate for the posterior than anterior regions by visual inspection because the posterior regions’ 

activity changes can be explained by the activity changes in the anterior regions for the lag=1,…5 time 

delays. Here, the anterior/posterior description corresponds to the precedency order according to the 

simulated connections (Fig. 5F). Notice also the scale difference between ground-truth and estimated 

waveforms which is expected because we recovered between 11 and 31 dipoles for each simulated 

source (Fig. 5C). 

                  



 
Figure 5: Large-scale MEG data simulation involving five brain sources. Ground-truth connectivity (autoregressive matrices) 
for lag=1,…,5 is provided in Materials and Methods, and ground-truth temporal dynamics are generated using the state-
space model in Eqs. (1, 2). Coloured spheres indicate simulated sources located in various brain regions in this sequence:  
occipital lobe (blue), temporo-parieto-occipital junction (orange), and inferior temporal gyrus (purple) in the left hemisphere, 
and primary motor cortices in the left (green) and right (cyan) hemispheres. These spheres are superimposed on the cortical 
surfaces in A and B to emphasize source locations. A) Top and bottom rows display HGDALS and minimum norm solutions, 
respectively, for MEG simulated data at the same time point (𝑡 = 28, first epoch) for 2004 evenly distributed dipoles on the 
cortical surface. Colourmaps illustrate signal intensity and scale differences between solutions. B) Four standard brain views 
show the cortical locations of the most-salient 100 estimated dipoles, with 96/100 accurately identified (coloured diamond 
marker) as grouped into the five clusters corresponding to each ground-truth sources. Star marker (yellow colour) indicate 
location of false recovered dipoles. True-recovered dipole counts for each region are 16, 20, 11, 31, and 18, in the same 
order as mentioned above. C) Temporal dynamics for the 96 true-recovered (blue curves) and ground-truth dipoles (overlaid 
orange curves) are shown separately for each region (rows) and selected epochs (columns). Scale differences between 
estimated and ground-truth dynamics are emphasized by the coloured left and right y-axes (matching plotted curve colors). 
D) Ground-truth simulated connectivity maps for each lag, with regions arranged in the same order as mentioned above, as 
indicated by coloured circles. E) Estimated connectivity maps for the 96 true-recovered dipoles, grouped by assigned clusters 
as denoted by coloured circles. Horizontal and vertical lines separate (highlight) the clusters. In D and E, colourmaps depict 
connectivity strength, with rows and columns representing incoming and outgoing connections for each source, respectively. 
F) A graph of ground-truth connections demonstrates information flow (alternative view to D), with nodes representing the 
ground-truth sources, and directed edges indicating connections. Connection delays are omitted for simplicity (refer to 
Materials and Methods). All connections are forward, except for recursion between the last two regions. 

Finally, Figs. 5D, E show the ground-truth and estimated connectivity matrices for the five sources and 

the most salient 100 dipoles, respectively, which also revealed outstanding results despite the higher 

dimension. For example, notice the very accurate recovery of the negative and positive interregional 

connections, particularly for the selected dipoles corresponding to simulated regions actively 

communicating for lag=2,3,4 in the ground-truth maps. That is, connections 1 → 3 (positive) for lag 2, 

1 → 3 (negative) and  1 → 4 (positive) for lag 3, and 1 → 4 (negative) for lag 4. Additionally, notice 

that the estimated interactions in the block diagonals for lag=1,2 (i.e., intraregional communication 

among the salient dipoles clustered around the same ground-truth simulated source) are mostly 

positive for lag=1 and negative for lag=2, which agrees with the ground truth for each lagged 

interaction. Finally, note that particularly the estimated connections for lag=3,4 were overlaid in the 

template brain (transparent) cortical surface in Fig. 1G using a 15% threshold to plot only the most 

relevant connections. Therein, it is evident that our algorithm correctly captured the simulated 

negative and positive connections 1 → 3 and 1 → 4, respectively, for lag=3 (arrows between the 

                  



regions denoted by blue and purple, and blue and green spheres), and the negative connection 1 → 4 

for lag=4. 

Analysis for simulated event related conditions 
The state-of-the-art inverse solution methods explored in this section include four methods provided 

in the Statistical Parametric Mapping (SPM12) toolbox (Penny et al., 2011) and two recently 

introduced Bayesian approaches to estimating spatiotemporal components with basis functions 

without (STBF) or with smoothness (SST) constraints (Liang et al., 2022; Liu et al., 2019). The four 

SPM12 methods are Empirical Bayesian Beamformer (EBB), Bayesian minimum norm without (MMN) 

and with smoothness priors in a way similar to LORETA (COH), and multiple sparse priors (MSP). All of 

these methods estimated the hyperparameter values using the Bayesian approach (Friston et al., 

2008; Liang et al., 2022; Liu et al., 2019; López et al., 2014; Penny et al., 2011). Whereas, for estimating 

the MPSS models using the SSALS/HGDALS algorithms, we used the extension of the 𝐾-fold cross-

validation approach to assess the model hyperparameters as previously discussed. 

Fig. 6 show the results based on the AWROC and RRSE statistics (Materials and Methods) to evaluate 

the spatial and temporal accuracy of the proposed SSALS approach vs state-of-the-art methods. The 

AWROC results reveal that in more realistic conditions (random source locations and 5 dB noise) our 

method was not clearly superior to the current methods (Fig. 6A). Although there are not overall 

significant differences among the different approaches, the Bayesian version of LORETA as 

implemented in the SPM toolbox (COH) seems to have a slightly superior spatial accuracy advantage, 

whereas EBB seems to have the worst outcome. On the other hand, for the RRSE stat, results reveal 

that MSP and EBB showed the best temporal accuracy with significant differences with respect to the 

other methods, whereas our approach showed the better results among the remaining approaches 

(see Supp. Materials Figs. 5-12 as complement). 

 

Figure 6: Illustration of spatial (A) and temporal (B) accuracy of different source localization methods, as evaluated using the 
area under weighted ROC (AWROC) and relative root squared error (RRSE) statistics, respectively. A) Boxplots of AWROC for 
the different tested methods (vertical orientation) for 80 Monte Carlo simulations: 20 simulation of each of four scenarios 
consisting of random locations of two or five simulated sources, combined with simulated activity patches of extension 6 or 
15 cm2. B) Similarly, but the boxplots are created for the RRSE stat (horizontal orientation) for the same simulations. 

Solving large-scale MPSS models for real event-related MEG/EEG data 
The MEG/EEG data analysed in this section corresponds to a single subject from the Wakeman and 

Henson study (Wakeman and Henson, 2015). As a proof of concept, we conducted only a single-

subject data analysis due to its substantial computational cost. The Wakeman and Henson study also 

provides individual anatomical MRI images and cortical surface segmentation. We used Fieldtrip 

                  



(Oostenveld et al., 2011) to calculate the MEG/EEG lead fields with dipoles perpendicularly oriented 

to the cortical surface and used the scripts provided by the study to run preprocessing analysis 

(Wakeman and Henson, 2015). After controlling for eye-movement artefacts, we extracted the same 

203 epochs for MEG/EEG analyses for the familiar face recognition task. All signals were filtered using 

a Butterworth low-pass filter for 25 Hz and downsampled to 𝐹𝑆 = 250 Hz. We used 𝑃 = 5 (lag=1,…,5) 

to estimate the past influences. As in the simulation above for large-scale data, we solved the modified 

optimisation problem for epoched data (Materials and Methods). Due to the computational cost of 

the algorithm, instead of calculating the entire time-varying FC, we conducted the analysis only for 

the time window of [100, 200] milliseconds after stimulus onset, according to the latency of face 

processing (Lin et al., 2018) and because it showed significant activity for this dataset as can be 

appreciated Wakeman and Henson’s Fig. 1a (Wakeman and Henson, 2015). 

 
Figure 7: Estimated functional connectivity maps for most salient estimated dipoles (overlaid blue colour-filled spheres) using 
the SSALS/HGDALS algorithm for (A) EEG and (B) MEG data, separately. Estimated connections among the dipoles are 
represented as arrows, using a 15% threshold regarding the maximum value of connectivity for better visibility. Columns 
show the connectivity maps for each lagged interaction (lag=1,…,5). Rows show different views for each map. 

Fig. 7A shows the results of the EEG analysis revealing the flow of information from the occipital to 

the inferior temporal lobe. This process corresponds to the activation of the ventral stream of the 

visual cortex as expected in a face processing task (Goodale and Milner, 1992; Lin et al., 2018; Miller 

et al., 2017), a remarkable finding also because of the consistency of flow direction. To a lesser degree, 

estimated visual cortex connections also target parietal and frontal regions. A further exciting and 

consistent outcome is that the interacting regions are mainly close to each other for the minor lags 

(lag=1,2, equivalent to influences from 4 to 8 milliseconds in the past). In contrast, the number of long-

range interactions increases for the higher lags (lag=4,5, corresponding to influences from 16 to 20 

milliseconds in the past), mainly between the occipital and frontal regions. 

On the other hand, Fig. 7B may reveal a contradictory result from the MEG-based analysis. In this case, 

using only the MEG signals (from both magnetometer and gradiometer channels), we can capture 

subcortical structures that create a hub of incoming information mainly from visual and temporal 

areas. This finding is also tenable as the processing of face information involves subcortical brain 

regions such as the amygdala and hippocampus, which is also evident in MEG/EEG studies (Dubarry 

et al., 2014; Dumas et al., 2013) and concurrent intracortical recordings (Dubarry et al., 2014). Overall, 

                  



the EEG data analysis outcome may be more consistent as it shows the activation of the ventral visual 

pathway related to face processing. 

Discussion 

In this study, we presented a data-driven regularization method for addressing large-scale state-space 

models, particularly interesting for solving simultaneously the brain source localization and functional 

connectivity problems. Unlike previous research (Barton et al., 2009; Cheung et al., 2010; Friston et 

al., 2003; Galka et al., 2004; Shumway and Stoffer, 1982; Van de Steen et al., 2019; Yamashita et al., 

2004), our approach directly resolves these issues in the high-dimensional manifold of brain 

activations and functional connectivity (FC), without dimensionality reduction as done in earlier 

studies (Cheung et al., 2010; Galka et al., 2004; Long et al., 2011). Traditional state-space model 

solutions rely on Kalman filtering, expectation maximization, or Bayesian/particle filtering (Barton et 

al., 2009; Cheung et al., 2010; Friston et al., 2003; Galka et al., 2004; Long et al., 2011; Puthanmadam 

et al., 2020; Shumway and Stoffer, 1982; Van de Steen et al., 2019; Yamashita et al., 2004), which may 

face difficulties when dealing with extensive data or more intricate situations, as shown through 

simulations. However, we demonstrated that even with moderately noisy data, simple algorithms like 

backpropagation can find stable solutions(Fig. 1B and Table 1). As supported by research on artificial 

neural networks (ANNs), backpropagation is effective in solving high-dimensional problems, being the 

preferred algorithm (Bengio, 2013; Yang and Wang, 2020), thus providing motivation for the 

development of suitable algorithms for large-scale state-space model as in this study. 

By examining large-scale state-space models, we highlighted the frequently overlooked issue of 

overfitting in model estimation within this field (Barton et al., 2009; Cheung et al., 2010; Friston et al., 

2003; Galka et al., 2004; Long et al., 2011; Shumway and Stoffer, 1982). We introduced multiple 

penalized state-space (MPSS) models and showcased that a data-driven regularization method, based 

on a novel K-fold cross-validation extension, can manage overfitting. To solve MPSS models, we 

proposed a state-space gradient descent (SSGD) algorithm, which may incorporate techniques used 

in training ANNs with backpropagation since both algorithms share a gradient descent (GD) 

optimization-based iterative approach. For instance, we demonstrated that SSGD can use momentum 

modification, and future implementations could also include stochastic GD, mini-batch GD, and other 

strategies to enhance learning and reduce the computational cost (Yang and Wang, 2020). Notably, 

SSGD outperformed backpropagation in our simulations, demonstrating more stable and quicker 

convergence. 

We then introduced a state-space alternating least squares (SSALS) algorithm and its hybrid 

combination with SSGD (HGDALS) to solve MPSS models with thousands of dynamic state variables 

and their corresponding connectivity matrices. Particularly, as demonstrated with Monte Carlo 

simulations, although the SSGD and SSALS algorithms can effectively solve small-scale state-space 

models, SSALS is superior from both a numerical and computational perspective (see Tables 4, 5). 

Remarkably, the SSALS algorithm provides iterative closed-form expressions, which mathematically 

demonstrate that brain source localization and FC problems complement and constrain each other. 

Ignoring this connection may lead to biased results, hindering progress in understanding cognitive 

brain functions or developing early biomarkers for neurodegeneration, such as for studying 

Alzheimer's disease (Sanchez-Bornot et al., 2021). 

It is important to note that our adaptation of the classical K-fold cross-validation approach for state-

space models is crucial for implementing the MPSS framework (Fig. 1E). Our situation is comparable 

to time series forecasting, where applying cross-validation directly is not possible due to temporally 

                  



correlated signals (Bergmeir et al., 2018). Nevertheless, we present a solution based on a practical 

data imputation procedure made possible by the MPSS framework (see Eqs. (14, 15) in Materials and 

Methods). Future research should further evaluate this and other cross-validation methods, such as 

nested cross-validation (Varoquaux et al., 2017), to ensure robustness to overfitting and proper model 

generalization. However, many existing cross-validation techniques assume uncorrelated noise, which 

is not accurate (Bergmeir et al., 2018; Chen et al., 1997), and might result in increased computational 

time without substantial benefits (Wainer and Cawley, 2021). Our MPSS regularization framework is 

thoroughly demonstrated using 100 Monte Carlo replications of the small-scale simulations, for both 

the proposed regularized and state-of-the-art methods (see Figs. 3,4 and Tables 6,7; see also Supp. 

Materials Tables 7,8 and discussion therein for complementary information). 

Our ultimate goal is to simultaneously address two significant unresolved challenges in MEG/EEG 

neuroimaging: brain source localization and functional connectivity (FC) problems. The SSALS 

algorithm is well-suited for this task, as it relies on quadratic optimization and is capable of addressing 

large-scale problems, particularly when modified for analysing epoched data (see Eqs. (22, 23) and 

more details in Materials and Methods). The optimization problem considers both the linearity of the 

source localization problem, due to the electromagnetic quasi-static assumptions (Nolte, 2003), and 

MVAR models, frequently employed to address the FC problem (Bastos and Schoffelen, 2016; Valdes-

Sosa et al., 2006). A potential criticism is that neural mass (Friston et al., 2003; Jansen and Rit, 1995; 

Sotero et al., 2007; Valdes-Sosa et al., 2009)  or spiking neuronal modeling (Gerstner et al., 2018; 

Izhikevich and Edelman, 2008) may better capture the nonlinear nature of neuronal dynamics. 

Consequently, exploring nonlinearity, its effects on model estimation, and the possibility of adapting 

backpropagation, SSGD, and SSALS/HGDALS algorithms to accommodate nonlinear generative models 

are compelling avenues for future research. 

To demonstrate the feasibility of our approach, we applied the proposed methodology to solve 

simultaneously the source localization and FC maps for simulated and real MEG/EEG data. First, in a 

resting state simulated scenario with favourable SNR conditions, we demonstrated the potential of 

our method to uncover the hidden dynamics in high-dimensional settings (Fig. 5). Then, in more 

realistic conditions simulating event related data (Materials and Methods), we presented the results 

for a comparison analysis against state-of-the-art inverse solution approaches (Fig. 6). In this latter 

analysis, the proposed SSALS approach showed an average performance attending to spatial accuracy 

and came closer to the top among the methods with better temporal accuracy. In general, it seems 

that the methods with significant highest temporal accuracy (MSP and EBB) did achieve so by 

sacrificing spatial accuracy. Although it is clear in this analysis that none of the methods demonstrated 

impressive results (see Supp. Materials Figs 5-12 for a visual inspection of estimated solutions), it 

should be noted that the SSALS algorithm has a large margin of improvement as we have continued 

the research to overcome implementation hurdles. The main critical issues are the computational time 

(around 24 hours) and the high amount of RAM resources (≈0.7 TB) to execute the SSALS algorithm 

for above high dimensional data. In contrast, the evaluated state-of-the-art methods are much more 

efficient as they focus only on estimating the ERP components, which otherwise limit their application 

for estimating FC maps. In addition, the state-of-the-art methods used the whole simulated epoched 

data, whereas our approach used only a limited number of samples due to RAM limitations, 

corresponding to the time window (50; 200] ms containing the main simulated FC dynamics (see 

details in Materials and Methods). A similar comparison analysis could have been performed involving 

state-of-the-art functional connectivity approaches; however, it was beyond our current available 

resources. In an ongoing research, we are exploring the combination of SSALS with variable selection 

algorithms to improve the computational limitations and accuracy of estimated spatiotemporal 

                  



dynamics (refer to Manomaisaowapak et al. (2021) and Yang et al. (2016) for similar but alternative 

approaches, which may well complement our approach to state-space models). 

Moreover, we applied our methodology to analyse real MEG/EEG data from a single subject  in the 

Wakeman and Henson’s database (Wakeman and Henson, 2015). The EEG analysis showed activation 

of the ventral stream of the visual system, with information flowing from occipital to inferior-temporal 

regions (see Fig. 7A). This observation was complemented by the consistent results from another 

recent investigation from our group, further applying the SSALS algorithm for dynamic FC assessment 

using only the EEG data from the subjects in this database (Sanchez-Bornot et al., 2023; see also the 

Supp. Materials Fig. 13). Conversely, the MEG analysis identified more active hubs in subcortical areas 

(Fig.7B). These findings, including the significant occipitotemporal activations in both analyses, align 

well with the existing literature (Dubarry et al., 2014; Dumas et al., 2013; Goodale and Milner, 1992; 

Miller et al., 2017). 

However, there are discernible differences between MEG/EEG outcomes which may be due to various 

factors. For example, first, the SSALS algorithm may not be fully optimized and therefore the solutions 

quality can be improved with further research. Second, MEG and EEG signals exhibit different 

sensitivities to source orientation and depth (Ahlfors et al., 2010). Third, inaccuracies in the head 

models used for MEG/EEG forward problems, which determine the respective lead field matrices, can 

significantly influence FC estimation (Cho et al., 2015). This possible negative influence should have 

different effects for MEG and EEG modalities as their corresponding forward problems are resolved 

separately, using different assumptions. Additionally, the observed differences may also be explained 

due to the fact that EEG sensors are attached to the scalp, while MEG sensors do not have a fixed 

reference with respect to the scalp. In principle, head movements during recording sessions can 

impact MEG signals and the estimated sources derived from them in non-trivial ways. Further 

refinements of the MPSS framework and SSALS algorithm can tackle some of these issues and, 

therefore, deserve further investigation. For instance, more robust spatiotemporal dynamics 

assessment is possible by extending our approach to perform dynamic FC analysis using the sliding 

time-window technique (Hindriks et al., 2016) or extending the optimization problem to estimate the 

whole data with time-varying autoregressive matrices. Critically, the MPSS framework computational 

implementation must be improved significantly to make possible further developments. 
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