1,037 research outputs found

    Model- and calibration-independent test of cosmic acceleration

    Full text link
    We present a calibration-independent test of the accelerated expansion of the universe using supernova type Ia data. The test is also model-independent in the sense that no assumptions about the content of the universe or about the parameterization of the deceleration parameter are made and that it does not assume any dynamical equations of motion. Yet, the test assumes the universe and the distribution of supernovae to be statistically homogeneous and isotropic. A significant reduction of systematic effects, as compared to our previous, calibration-dependent test, is achieved. Accelerated expansion is detected at significant level (4.3 sigma in the 2007 Gold sample, 7.2 sigma in the 2008 Union sample) if the universe is spatially flat. This result depends, however, crucially on supernovae with a redshift smaller than 0.1, for which the assumption of statistical isotropy and homogeneity is less well established.Comment: 13 pages, 2 figures, major change

    Elastic interactions of active cells with soft materials

    Full text link
    Anchorage-dependent cells collect information on the mechanical properties of the environment through their contractile machineries and use this information to position and orient themselves. Since the probing process is anisotropic, cellular force patterns during active mechanosensing can be modelled as anisotropic force contraction dipoles. Their build-up depends on the mechanical properties of the environment, including elastic rigidity and prestrain. In a finite sized sample, it also depends on sample geometry and boundary conditions through image strain fields. We discuss the interactions of active cells with an elastic environment and compare it to the case of physical force dipoles. Despite marked differences, both cases can be described in the same theoretical framework. We exactly solve the elastic equations for anisotropic force contraction dipoles in different geometries (full space, halfspace and sphere) and with different boundary conditions. These results are then used to predict optimal position and orientation of mechanosensing cells in soft material.Comment: Revtex, 38 pages, 8 Postscript files included; revised version, accepted for publication in Phys. Rev.

    Singular riemannian foliations with sections, transnormal maps and basic forms

    Full text link
    A singular riemannian foliation F on a complete riemannian manifold M is said to admit sections if each regular point of M is contained in a complete totally geodesic immersed submanifold (a section) that meets every leaf of F orthogonally and whose dimension is the codimension of the regular leaves of F. We prove that the algebra of basic forms of M relative to F is isomorphic to the algebra of those differential forms on a section that are invariant under the generalized Weyl pseudogroup of this section. This extends a result of Michor for polar actions. It follows from this result that the algebra of basic function is finitely generated if the sections are compact. We also prove that the leaves of F coincide with the level sets of a transnormal map (generalization of isoparametric map) if M is simply connected, the sections are flat and the leaves of F are compact. This result extends previous results due to Carter and West, Terng, and Heintze, Liu and Olmos.Comment: Preprint IME-USP; The final publication is available at springerlink.com http://www.springerlink.com/content/q48682633730t831

    Bulk experimental evidence of half-metallic ferromagnetism in doped manganites

    Full text link
    We report precise measurements and quantitative data analysis on the low-temperature resistivity of several ferromagnetic manganite films. We clearly show that there exists a T^{4.5} term in low-temperature resistivity, and that this term is in quantitative agreement with the quantum theory of two-magnon scattering for half metallic ferromagnets. Our present results provide the first bulk experimental evidence of half-metallic ferromagnetism in doped manganites.Comment: 4 pages, 4 figure

    Magnetization of a two-dimensional electron gas with a second filled subband

    Get PDF
    We have measured the magnetization of a dual-subband two-dimensional electron gas, confined in a GaAs/AlGaAs heterojunction. In contrast to two-dimensional electron gases with a single subband, we observe non-1/B-periodic, triangularly shaped oscillations of the magnetization with an amplitude significantly less than 1μB1 \mu_{\mathrm{B}}^* per electron. All three effects are explained by a field dependent self-consistent model, demonstrating the shape of the magnetization is dominated by oscillations in the confining potential. Additionally, at 1 K, we observe small oscillations at magnetic fields where Landau-levels of the two different subbands cross.Comment: 4 pages, 4 figure

    Statistical methods in cosmology

    Full text link
    The advent of large data-set in cosmology has meant that in the past 10 or 20 years our knowledge and understanding of the Universe has changed not only quantitatively but also, and most importantly, qualitatively. Cosmologists rely on data where a host of useful information is enclosed, but is encoded in a non-trivial way. The challenges in extracting this information must be overcome to make the most of a large experimental effort. Even after having converged to a standard cosmological model (the LCDM model) we should keep in mind that this model is described by 10 or more physical parameters and if we want to study deviations from it, the number of parameters is even larger. Dealing with such a high dimensional parameter space and finding parameters constraints is a challenge on itself. Cosmologists want to be able to compare and combine different data sets both for testing for possible disagreements (which could indicate new physics) and for improving parameter determinations. Finally, cosmologists in many cases want to find out, before actually doing the experiment, how much one would be able to learn from it. For all these reasons, sophisiticated statistical techniques are being employed in cosmology, and it has become crucial to know some statistical background to understand recent literature in the field. I will introduce some statistical tools that any cosmologist should know about in order to be able to understand recently published results from the analysis of cosmological data sets. I will not present a complete and rigorous introduction to statistics as there are several good books which are reported in the references. The reader should refer to those.Comment: 31, pages, 6 figures, notes from 2nd Trans-Regio Winter school in Passo del Tonale. To appear in Lectures Notes in Physics, "Lectures on cosmology: Accelerated expansion of the universe" Feb 201

    Renormalization Group Flow Equation at Finite Density

    Get PDF
    For the linear sigma model with quarks we derive renormalization group flow equations for finite temperature and finite baryon density using the heat kernel cutoff. At zero temperature we evolve the effective potential to the Fermi momentum and compare the solutions of the full evolution equation with those in the mean field approximation. We find a first order phase transition either from a massive constituent quark phase to a mixed phase, where both massive and massless quarks are present, or from a metastable constituent quark phase at low density to a stable massless quark phase at high density. In the latter solution, the formation of droplets of massless quarks is realized even at low density.Comment: 30 pages, 9 figures; typos corrected, section 3 revised, one reference added, two references updated, submitted to Phys. Rev.
    corecore