1,319 research outputs found
Late right ventricular perforation and hemothorax after transvenous defribrillator lead implantation
A 53-year-old man with ischemic cardiomyopathy underwent prophylactic transvenous implantable cardioverter-defibrillator (ICD) placement. Nine days after the procedure, he had recurrent chest pain and left pleural effusion associated with a drop in hemoglobin. Hemothorax and right ventricular (RV) lead perforation were suspected on chest radiography and lead interrogation, and confirmed by thoracentesis and contrast computed tomography (CT) scanning, respectively. The CT-scan clearly demonstrated the RV lead tip projecting beyond the cardiac border into the anterior left pleural space. The perforated lead was removed in the operating room under transesophageal echocardiography guidance and a new transvenous lead was successfully placed a month later. This case highlights: 1) the importance of suspecting late RV perforation in patients with ICD implantation presenting with recurrent chest pain and/or pleural effusion; 2) the value of CT in its diagnosis; and 3) the need for a more careful management of this potentially life threatening complication
The Development of a Food Safety Brochure for Families: The Use of Formative Evaluation and Plain Language Strategies
Printed materials have been used extensively as an educational tool to increase food safety awareness. Few educational materials have been designed to target families with young children for food safety education. This article reports the use of the formative evaluation process to develop a brochure designed to enhance awareness about food safety among primary food handlers of families with children 10 years and under. Quantitative and qualitative evaluation included the use of plain language principles and two focus groups with target audience members. Application of systematic formative evaluation can help health practitioners develop more effective consumer-centered educational materials
5D gravity and the discrepant G measurements
It is shown that 5D Kaluza-Klein theory stabilized by an external bulk scalar
field may solve the discrepant laboratory G measurements. This is achieved by
an effective coupling between gravitation and the geomagnetic field.
Experimental considerations are also addressed.Comment: 13 pages, to be published in: Proceedings of the 18th Course of the
School on Cosmology and Gravitation: The gravitational Constant. Generalized
gravitational theories and experiments (30 April-10 May 2003, Erice). Ed. by
G. T. Gillies, V. N. Melnikov and V. de Sabbata, (Kluwer), 13pp. (in print)
(2003
Mesoscopic organization reveals the constraints governing C. elegans nervous system
One of the biggest challenges in biology is to understand how activity at the
cellular level of neurons, as a result of their mutual interactions, leads to
the observed behavior of an organism responding to a variety of environmental
stimuli. Investigating the intermediate or mesoscopic level of organization in
the nervous system is a vital step towards understanding how the integration of
micro-level dynamics results in macro-level functioning. In this paper, we have
considered the somatic nervous system of the nematode Caenorhabditis elegans,
for which the entire neuronal connectivity diagram is known. We focus on the
organization of the system into modules, i.e., neuronal groups having
relatively higher connection density compared to that of the overall network.
We show that this mesoscopic feature cannot be explained exclusively in terms
of considerations, such as optimizing for resource constraints (viz., total
wiring cost) and communication efficiency (i.e., network path length).
Comparison with other complex networks designed for efficient transport (of
signals or resources) implies that neuronal networks form a distinct class.
This suggests that the principal function of the network, viz., processing of
sensory information resulting in appropriate motor response, may be playing a
vital role in determining the connection topology. Using modular spectral
analysis, we make explicit the intimate relation between function and structure
in the nervous system. This is further brought out by identifying functionally
critical neurons purely on the basis of patterns of intra- and inter-modular
connections. Our study reveals how the design of the nervous system reflects
several constraints, including its key functional role as a processor of
information.Comment: Published version, Minor modifications, 16 pages, 9 figure
BPS Spectrum, Indices and Wall Crossing in N=4 Supersymmetric Yang-Mills Theories
BPS states in N=4 supersymmetric SU(N) gauge theories in four dimensions can
be represented as planar string networks with ends lying on D3-branes. We
introduce several protected indices which capture information on the spectrum
and various quantum numbers of these states, give their wall crossing formula
and describe how using the wall crossing formula we can compute all the indices
at all points in the moduli space.Comment: LaTeX file, 33 pages, 15 figure
The actin-myosin regulatory MRCK kinases: regulation, biological functions and associations with human cancer
The contractile actin-myosin cytoskeleton provides much of the force required for numerous cellular activities such as motility, adhesion, cytokinesis and changes in morphology. Key elements that respond to various signal pathways are the myosin II regulatory light chains (MLC), which participate in actin-myosin contraction by modulating the ATPase activity and consequent contractile force generation mediated by myosin heavy chain heads. Considerable effort has focussed on the role of MLC kinases, and yet the contributions of the myotonic dystrophy-related Cdc42-binding kinases (MRCK) proteins in MLC phosphorylation and cytoskeleton regulation have not been well characterized. In contrast to the closely related ROCK1 and ROCK2 kinases that are regulated by the RhoA and RhoC GTPases, there is relatively little information about the CDC42-regulated MRCKα, MRCKβ and MRCKγ members of the AGC (PKA, PKG and PKC) kinase family. As well as differences in upstream activation pathways, MRCK and ROCK kinases apparently differ in the way that they spatially regulate MLC phosphorylation, which ultimately affects their influence on the organization and dynamics of the actin-myosin cytoskeleton. In this review, we will summarize the MRCK protein structures, expression patterns, small molecule inhibitors, biological functions and associations with human diseases such as cancer
Collective Animal Behavior from Bayesian Estimation and Probability Matching
Animals living in groups make movement decisions that depend, among other factors, on social interactions with other group members. Our present understanding of social rules in animal collectives is based on empirical fits to observations and we lack first-principles approaches that allow their derivation. Here we show that patterns of collective decisions can be derived from the basic ability of animals to make probabilistic estimations in the presence of uncertainty. We build a decision-making model with two stages: Bayesian estimation and probabilistic matching.
In the first stage, each animal makes a Bayesian estimation of which behavior is best to perform taking into account personal information about the environment and social information collected by observing the behaviors of other animals. In the probability matching stage, each animal chooses a behavior with a probability given by the Bayesian estimation that this behavior is the most appropriate one. This model derives very simple rules of interaction in animal collectives that depend only on two types of reliability parameters, one that each animal assigns to the other animals and another given by the quality of the non-social information. We test our model by obtaining theoretically a rich set of observed collective patterns of decisions in three-spined sticklebacks, Gasterosteus aculeatus, a shoaling fish species. The quantitative link shown between probabilistic estimation and collective rules of behavior allows a better contact with other fields such as foraging, mate selection, neurobiology and psychology, and gives predictions for experiments directly testing the relationship between estimation and collective behavior
Loop Quantum Gravity a la Aharonov-Bohm
The state space of Loop Quantum Gravity admits a decomposition into
orthogonal subspaces associated to diffeomorphism equivalence classes of
spin-network graphs. In this paper I investigate the possibility of obtaining
this state space from the quantization of a topological field theory with many
degrees of freedom. The starting point is a 3-manifold with a network of
defect-lines. A locally-flat connection on this manifold can have non-trivial
holonomy around non-contractible loops. This is in fact the mathematical origin
of the Aharonov-Bohm effect. I quantize this theory using standard field
theoretical methods. The functional integral defining the scalar product is
shown to reduce to a finite dimensional integral over moduli space. A
non-trivial measure given by the Faddeev-Popov determinant is derived. I argue
that the scalar product obtained coincides with the one used in Loop Quantum
Gravity. I provide an explicit derivation in the case of a single defect-line,
corresponding to a single loop in Loop Quantum Gravity. Moreover, I discuss the
relation with spin-networks as used in the context of spin foam models.Comment: 19 pages, 1 figure; v2: corrected typos, section 4 expanded
Computational Cancer Biology: An Evolutionary Perspective
ISSN:1553-734XISSN:1553-735
- …