517 research outputs found

    Root reinforcement dynamics in subalpine spruce forests following timber harvest: A case study in Canton Schwyz, Switzerland

    Get PDF
    Root reinforcement is a key factor when dealing with slope stability problems and is an important quantitative criterion for the evaluation of the protective function of forests against shallow landslides, as well as for the adoption of appropriate practices in protection forest management. Although many models have been developed to estimate root reinforcement, a reliable quantification that considers both its spatial and temporal variability still remains a challenge. This work aims to extend the understanding of the long term spatial and temporal dynamics of root reinforcement after forest harvest in subalpine spruce forests by supplying new experimental data and applying a state-of-the-art model.We estimated root reinforcement decay 5, 10 and 15 years after timber had been harvested in spruce stands in a small catchment in the Swiss Alps. We collected root distribution data at different distances from the trees and calibrated and validated a root distribution model (RootDis). To estimate root mechanical properties, we tested roots up to 12 mm diameter in the field, and computed root reinforcement for each case study with the Root Bundle Model. Finally, we developed a new model for the estimation of root reinforcement decay, based on the observed change in root distribution after felling and on the decay of the root pullout force. The final result is a model for the spatial-temporal prediction of root reinforcement heterogeneity and dynamics in subalpine spruce forest stands. Five year old harvested spruce forest in the climatic conditions of the study area provides 40% of the root reinforcement of live forest, while 15 years old harvested forest provides no reinforcement at all. Shrub species and natural regeneration could guarantee almost the 30% of the root reinforcement of a live forest after 15 years from cutting. Additional work is now required to further validate the model and implement these results in a slope stability analysis

    Three-dimensional N=8 conformal supergravity and its coupling to BLG M2-branes

    Full text link
    This paper is concerned with the problem of coupling the N=8 superconformal Bagger-Lambert-Gustavsson (BLG) theory to N=8 conformal supergravity in three dimensions. We start by constructing the on-shell N=8 conformal supergravity in three dimensions consisting of a Chern-Simons type term for each of the gauge fields: the spin connection, the SO(8) R-symmetry gauge field and the spin 3/2 Rarita-Schwinger (gravitino) field. We then proceed to couple this theory to the BLG theory. The final theory should have the same physical content, i.e., degrees of freedom, as the ordinary BLG theory. We discuss briefly the properties of this "topologically gauged" BLG theory and why this theory may be useful.Comment: 20 pages, v2: references and comments added, presentation in section 3.2 extended. v3: misprints and a sign error corrected, version published in JHE

    Constraining Maximally Supersymmetric Membrane Actions

    Full text link
    We study the recent construction of maximally supersymmetric field theory Lagrangians in three spacetime dimensions that are based on algebras with a triple product. Assuming that the algebra has a positive definite metric compatible with the triple product, we prove that the only non-trivial examples are either the well known case based on a four dimensional algebra or direct sums thereof.Comment: 11 pages, very minor changes. Reference added. Version to be published in JHE

    Thermodynamics of volume collapse transitions in cerium and related compounds

    Full text link
    We present a non-linear elastic model of a coherent transition with discontinuous volume change in an isotropic solid. The model reproduces the anomalous thermodynamics typical of coherent equilibrium including intrinsic hysteresis (for a pressure driven experiment) and a negative bulk modulus. The novelty of the model is that the statistical mechanics solution can be easily worked out. We find that coherency leads to an infinite-range density--density interaction, which drives classical critical behavior. The pressure width of the hysteresis loop shrinks with increasing temperature, ending at a critical point at a temperature related to the shear modulus. The bulk modulus softens with a 1/2 exponent at the transition even far from the critical point. Many well known features of the phase diagram of Ce and related systems are explained by the model.Comment: Acta Materialia, in pres

    Nanofriction mechanisms derived from the dependence of friction on load and sliding velocity from air to UHV on hydrophilic silicon

    Full text link
    This paper examines friction as a function of the sliding velocity and applied normal load from air to UHV in a scanning force microscope (SFM) experiment in which a sharp silicon tip slides against a flat Si(100) sample. Under ambient conditions, both surfaces are covered by a native oxide, which is hydrophilic. During pump-down in the vacuum chamber housing the SFM, the behavior of friction as a function of the applied normal load and the sliding velocity undergoes a change. By analyzing these changes it is possible to identify three distinct friction regimes with corresponding contact properties: (a) friction dominated by the additional normal forces induced by capillarity due to the presence of thick water films, (b) higher drag force from ordering effects present in thin water layers and (c) low friction due to direct solid-solid contact for the sample with the counterbody. Depending on environmental conditions and the applied normal load, all three mechanisms may be present at one time. Their individual contributions can be identified by investigating the dependence of friction on the applied normal load as well as on the sliding velocity in different pressure regimes, thus providing information about nanoscale friction mechanisms

    Superconformal Indices for Orbifold Chern-Simons Theories

    Get PDF
    We calculate the superconformal indices of recently discovered three-dimensional N=4,5 Chern-Simons-matter theories and compare them with the corresponding indices of supergravity on AdS4 times orbifolds of S7. We find perfect agreement in the large N and large k limit, provided that the twisted sector contributions at the fixed loci of the orbifolds are properly taken into account. We also discuss the index for the so-called "dual ABJM" proposal.Comment: 27 pages, 1 figure; v2. reference added, minor correction

    Feynman rules for effective Regge action

    Full text link
    Starting from the gauge invariant effective action in the quasi-multi-Regge kinematics (QMRK), we obtain the effective reggeized gluon (R) -- particle (P) vertices of the following types: RPPRPP, RRPRRP, RRPPRRPP, RPPPRPPP, RRPPPRRPPP, and RPPPPRPPPP, where the on-mass-shell particles are gluons, or sets of gluons with small invariant masses. The explicit expressions satisfying the Bose-symmetry and gauge invariance conditions are obtained. As a comment to the Feynman rules for derivation of the amplitudes in terms of effective vertices we present a ``vocabulary'' for practitioners.Comment: REVTeX, 21 pages, 10 figure

    N=8 superconformal gauge theories and M2 branes

    Get PDF
    Based on recent developments, in this letter we find 2+1 dimensional gauge theories with scale invariance and N=8 supersymmetry. The gauge theories are defined by a Lagrangian and are based on an infinite set of 3-algebras, constructed as an extension of ordinary Lie algebras. Recent no-go theorems on the existence of 3-algebras are circumvented by relaxing the assumption that the invariant metric is positive definite. The gauge group is non compact, and its maximally compact subgroup can be chosen to be any ordinary Lie group, under which the matter fields are adjoints or singlets. The theories are parity invariant and do not admit any tunable coupling constant. In the case of SU(N) the moduli space of vacua contains a branch of the form (R^8)^N/S_N. These properties are expected for the field theory living on a stack of M2 branes.Comment: 14 pages, no figure

    Scalable and accurate causality tracking for eventually consistent stores

    Get PDF
    Lecture Notes in Computer Science 8460, 2014In cloud computing environments, data storage systems often rely on optimistic replication to provide good performance and availability even in the presence of failures or network partitions. In this scenario, it is important to be able to accurately and efficiently identify updates executed concurrently. Current approaches to causality tracking in optimistic replication have problems with concurrent updates: they either (1) do not scale, as they require replicas to maintain information that grows linearly with the number of writes or unique clients; (2) lose information about causality, either by removing entries from client-id based version vectors or using server-id based version vectors, which cause false conflicts. We propose a new logical clock mechanism and a logical clock framework that together support a traditional key-value store API, while capturing causality in an accurate and scalable way, avoiding false conflicts. It maintains concise information per data replica, only linear on the number of replica servers, and allows data replicas to be compared and merged linear with the number of replica servers and versions.(undefined

    Electromagnetic String Fluid in Rolling Tachyon

    Get PDF
    We study Born-Infeld type effective action for unstable D3-brane system including a tachyon and an Abelian gauge field, and find the rolling tachyon with constant electric and magnetic fields as the most general homogeneous solution. Tachyonic vacua are characterized by magnitudes of the electric and magnetic fields and the angle between them. Analysis of small fluctuations in this background shows that the obtained configuration may be interpreted as a fluid consisting of string-like objects carrying electric and magnetic fields. They are stretched along one direction and the rolling tachyon move in a perpendicular direction to the strings. Direction of the propagating waves coincides with that of strings with velocity equal to electric field.Comment: LaTeX, 18 pages, 1 figure, minor correction
    corecore