
Scalable and Accurate Causality Tracking
for Eventually Consistent Stores

Paulo Sérgio Almeida1, Carlos Baquero1,
Ricardo Gonçalves1, Nuno Preguiça2, and Victor Fonte1

1 HASLab, INESC Tec & Universidade do Minho
{psa,cbm,tome,vff}@di.uminho.pt
2 CITI/DI, FCT, Universidade Nova de Lisboa

nuno.preguica@fct.unl.pt

Abstract. In cloud computing environments, data storage systems often rely on
optimistic replication to provide good performance and availability even in the
presence of failures or network partitions. In this scenario, it is important to be
able to accurately and efficiently identify updates executed concurrently. Current
approaches to causality tracking in optimistic replication have problems with con-
current updates: they either (1) do not scale, as they require replicas to maintain
information that grows linearly with the number of writes or unique clients; (2)
lose information about causality, either by removing entries from client-id based
version vectors or using server-id based version vectors, which cause false con-
flicts. We propose a new logical clock mechanism and a logical clock framework
that together support a traditional key-value store API, while capturing causal-
ity in an accurate and scalable way, avoiding false conflicts. It maintains concise
information per data replica, only linear on the number of replica servers, and
allows data replicas to be compared and merged linear with the number of replica
servers and versions.

1 Introduction

Amazon’s Dynamo system [5] was an important influence to a new generation of databa-
ses, such as Cassandra [10] and Riak [9], focusing on partition tolerance, write availabil-
ity and eventual consistency. The underlying rationale to these systems stems from the
observation that when faced with the three concurrent goals of consistency, availability
and partition-tolerance only two of those can be achievable in the same system [3,6].
Facing geo-replication operation environments where partitions cannot be ruled out,
consistency requirements are inevitably relaxed in order to achieve high availability.

These systems follow a design where the data store is always writable: replicas of
the same data item are allowed to temporarily diverge and to be repaired later on. A
simple repair approach followed in Cassandra, is to use wall-clock timestamps to know
which concurrent updates should prevail. This last writer wins (lww) policy may lead
to lost updates. An approach which avoids this, must be able to represent and maintain
causally concurrent updates until they can be reconciled.

Accurate tracking of concurrent data updates can be achieved by a careful use of
well established causality tracking mechanisms [11,14,20,19,2]. In particular, for data
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storage systems, version vectors (vv) [14] enable the system to compare any pair of
replica versions and detect if they are equivalent, concurrent or if one makes the other
obsolete. However, as we will discuss in Section 3, vv lack the ability to accurately
represent concurrent values when used with server ids, or are not scalable when used
with client ids.

We present a new and simple causality tracking solution, Dotted Version Vectors
(briefly introduced in [16]), that overcomes these limitations allowing both scalable (us-
ing server ids) and fully accurate (representing same server concurrent writes) causality
tracking. It achieves this by explicitly separating a new write event identifier from its
causal past, which has the additional benefit of allowing causality checks between two
clocks in constant time (instead of linear with the size of version vectors).

Besides fully describing Dotted Version Vectors (dvv), in this paper we make two
novel contributions. First, we propose a new container (DVV Sets or dvvs) that effi-
ciently compacts a set of concurrent dvv’s in a single data structure, improving on two
dvv limitations: (1) dvvs representation is independent of the number of concurrent
values, instead of linear; (2) comparing and synchronizing two replica servers w.r.t. a
single key is linear with the number of concurrent values, instead of quadratic.

Our final contribution is a general framework that clearly defines a set of functions
that logical clocks need to implement to correctly track causality in eventually consis-
tent systems. We implement both dvv and dvvs using this framework.

The rest of this paper is organized as follows. Section 2 presents the system model
for the remaining paper. We survey and compare current mechanisms for causality
tracking in Section 3. In Section 4, we present our mechanism dvv, followed by its
compact version dvvs, in Section 5. We then propose in Section 6 a general frame-
work for logical clocks and its implementation with both dvv and dvvs. In Section 7 we
present the asymptotic complexities for both the current and proposed mechanisms, as
well as an evaluation of dvvs. Additional techniques are briefly discussed in Section 8.
We conclude in Section 9.

2 System Model and Data Store API

We consider a standard Dynamo-like key-value store interface that exposes two oper-
ations: get(key) and put(key,value,context). get returns a pair (value(s),context), i.e.,
a value or set of causally concurrent values, and an opaque context that encodes the
causal knowledge in the value(s). put submits a single value that supersedes all values
associated to the supplied context. This context is either empty if we are writing a new
value, or some opaque data structure returned to the client by a previous get, if we are
updating a value. This context encodes causal information, and its use in the API serves
to generate a happens-before [20] relation between a get and a subsequent put.

We assume a distributed system where nodes communicate by asynchronous mes-
sage passing, with no shared memory. The system is composed by possibly many (e.g.,
thousands) clients which make concurrent get and put requests to server nodes (in the
order of, e.g., hundreds). Each key is replicated in a typically small subset of the server
nodes (e.g., 3 nodes), which we call the replica nodes for that key. These different or-



ders of magnitude of clients, servers and replicas play an important role in the design
of a scalable causality tracking mechanism.

We assume: no global distributed coordination mechanism, only that nodes can per-
form internal concurrency control to obtain atomic blocks; no sessions or any form of
client-server affinity, so clients are free to read from a replica server node and then write
to a different one; no byzantine failures; server nodes have stable storage; nodes can fail
without warning and later recover with their last state in the stable storage.

As we do not aim to track causality between different keys, in the remainder we
will focus on operations over a single key, which we leave implicit; namely, all data
structures in servers that we will describe are per key. Techniques as in [13] can be
applied when considering groups of keys and could introduce additional savings; this
we leave for future work.

3 Current Approaches

To simplify comparisons between different mechanisms, we will introduce a simple
execution example between clients Mary and Peter, and a single replica node. In this
example, presented in Figure 1, Peter starts by writing a new object version v1, with
an empty context, which results in some server state A. He then reads server state A,
returning current version v1 and context ctxA. Meanwhile, Mary writes a new version
v2, with an empty context, resulting in some server state B. Since Mary wrote v2 without
reading state A, state B should contain both v1 and v2 as concurrent versions, if causality
is tracked. Finally, Peter updates version v1 with v3, using the previous context ctxA,
resulting in some state C. If causal relations are correctly represented, state C we should
only have v2 and v3, since v1 was superseded by v3 and v2 is concurrent with v3. We
now discuss how different causality tracking approaches address this example, which
are summarized in Table 1.

Last Writer Wins (lww) In systems that enforce a lww policy, such as Cassandra, con-
current updates are not represented in the stored state and only the last update prevails.
Under lww, our example would result in the loss of v2. Although some specific applica-
tion semantics are compatible with a lww policy, this simplistic approach is not adequate
for many other application semantics. In general, a correct tracking of concurrent up-
dates is essential to allow all updates to be considered for conflict resolution.

Causal Histories (ch) Causal Histories [20] are simply described by sets of unique
write identifiers. These identifiers can be generated with a unique identifier and a mono-
tonic counter. In our example, we used server identifiers r, but client identifiers could be
used as well. The crucial point is that identifiers have to be globally unique to correctly
represent causality. Let idn be the notation for the nth event of the entity represented by
id. The partial order of causality can be precisely tracked by comparing these sets under
set inclusion. Two ch are concurrent if neither includes the other: A ‖ B iff A 6⊆ B and
B 6⊆ A. ch correctly track causality relations, as can be seen in our example, but have a
major drawback: they grow linearly with the number of writes.
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Fig. 1: Example execution for one key: Peter writes a new value v1 (A), then reads from
Replica (ctxA). Next, Mary writes a new value v2 (B) and finally Peter updates v1 with
v3 (C).

lww ch vvclient vvserver dvv dvvs
A 17h00 : v1 {r1} : v1 {(p,1)} : v1 {(r,1)} : {v1} ((r,1),{}) : v1 {(r,1, [v1])}
ctxA {} {r1} {(p,1)} {(r,1)} {(r,1)} {(r,1)}
B 17h03 : v2 {r1} : v1 {(p,1)} : v1 {(r,2)} : ((r,1),{}) : v1 {(r,2, [v2,v1])}

{r2} : v2 {(m,1)} : v2 {v1,v2} ((r,2),{}) : v2
C 17h07 : v3 {r2} : v2 {(m,1)} : v2 {(r,3)} : ((r,2),{}) : v2 {(r,3, [v3,v2])}

{r1,r3} : v3 {(p,2)} : v3 {v1,v2,v3} ((r,3),{(r,1)}) : v3
Table 1: The table shows the replica (r) state after write from Peter (p) and Mary (m),
and the context returned by Peter’s read. We use the metadata : value(s) notation, ex-
cept for dvvs which has its own internal structure.

Version Vectors (vv) Version Vectors are an efficient representation of ch, provided
that the ch has no gaps in each id’s event sequence. A vv is a mapping from identifiers
to counters, and can be written as a set of pairs (id,counter); each pair represents a set
of ch events for that id: {idn | 0 < n ≤ counter}. In terms of partial order, A ≤ B iff
∀(i,ca) ∈ A · ∃(i,cb) ∈ B · ca ≤ cb. Again, A ‖ B iff A 6≤ B and B 6≤ A. Whether client or
server identifiers are used in vv has major consequences, as we’ll see next.

Version Vectors with Id-per-Client (vvclient) This approach uses vv with clients as
unique identifiers. An update is registered in a server by using the client identification
issued in a put. This provides enough information to accurately encode the concurrency
and causality in the system, since concurrent client writes are represented in the vvclient
with different ids. However, it sacrifices scalability, since vvclient will end up storing
the ids of all the clients that ever issued writes to that key. Systems like Dynamo try
to compensate this by pruning entries in vvclient at a specific threshold, but it typically
leads to false concurrency and further need for reconciliation. The higher the degree of
pruning, the higher is the degree of false concurrency in the system.

Version Vectors with Id-per-Server (vvserver) If causality is tracked with vvserver, i.e.,
using vv with server identifiers, it is possible to correctly detect concurrent updates
that are handled by different server nodes. However, if concurrent updates are handled
by the same server, there is no way to express the concurrent values — siblings —
separately. To avoid overwriting siblings and losing information (as in lww), a popu-
lar solution to this, is to group all siblings under the same vvserver, losing individual
causality information. This can easily lead to false concurrency: either a write’s context



causally dominates the server vvserver, in which case all siblings are deemed obsolete
and replaced by the new value; or this new value must be added to the current siblings,
even if some of them were in its causal past.

Using our example, we finish the execution with all three values {v1,v2,v3}, when
in fact v3 should have obsoleted v1, like the other causally correct mechanisms in Ta-
ble 2 (expect for lww).

With vvserver, false concurrency can arise whenever a client read-write cycle is in-
terleaved with another concurrent write on the same server. This can become especially
problematic under heavy load with many clients concurrently writing: under high la-
tency, if a read-write cycle cannot be completed without interleaving with another con-
current write, the set of siblings will keep on growing. This will make messages grow
larger, the server load heavier, resulting in a positive feedback loop, in what can be
called a sibling explosion.

4 Dotted Version Vectors

We now present an accurate mechanism that can be used as a substitute for classic
version vectors (vv) in eventually consistent stores, while still using only one Id per
replica node. The basic idea of Dotted Version Vectors (dvv) is to take a vv and add the
possibility of representing an individual causal event — dot — separate from the rest
of the contiguous events. The dot is kept separate from the causal past and it globally
and uniquely identifies a write. This allows representing concurrent writes, on the same
server, by having different dots.

In our example from Figure 1, we can see that state B is represented with a unique
dot for both v1 and v2, even-though they both were written with an equally empty
context. This distinction in their dots is what enables the final write by Peter to correctly
overwrite v1, since the context supersedes its dot (and dvv), while maintaining v2 which
has a newer dot than the context. In contrast, vvserver loses this distinction gained by
separating dots by grouping every sibling in one vv and thus cannot know that v1 is
outdated by v3.

4.1 Definition

A dvv consists in a pair (d,v), where v is a traditional vv and the dot d is a pair (i,n),
with i as a node identifier and n as an integer. The dot uniquely represents a write and its
associated version, while the vv represents the causal past (i.e. its context). The causal
events (or dots) represented by a dvv can be generated by a function toch that translates
logical clocks to causal histories (ch can be viewed as sets of dots):

toch(((i,n),v)) = {in}∪ toch(v),

toch(v) =
⋃

(i,n)∈v

{im | 1≤ m≤ n},

where in denotes the nth dot generated by node i, and toch(v) is the same function
but for traditional vv. With this definition, the ch {a1,b1,b2,c1,c2,c4} that cannot be
represented by vv, can now be represented by the dvv ((c,4),{(a,1),(b,2),(c,2)}).



4.2 Partial Order

The partial order on dvv can be defined in terms of inclusion of ch; i.e.:

X ≤ Y ⇐⇒ toch(X)⊆ toch(Y ),

Given that each dot is generated as a globally unique event — using the notational
convenience v[i] = n, for (i,n) ∈ v and v[i] = 0 for any non mapped id — the partial
order on possible dvv values becomes:

((i,n),u)< (( j,m),v)⇐⇒ n≤ v[i] ∧ u≤ v,

where the traditional point-wise comparison of vv is used: u≤ v⇐⇒∀(i,n)∈u.n≤ v[i].
An important consequence of keeping the dot separate from the causal past is that, if

the dot in X is contained in the causal past of Y , it means that Y was generated causally
after X , thus Y also contains the causal past of X . This means that there is no need for the
comparison of the vv component and the order can be computed as an O(1) operation
(assuming access to a map data structure in effectively constant time), simply as:

((i,n),u)< (( j,m),v)⇐⇒ n≤ v[i].

5 Dotted Version Vector Sets

Dotted Version Vectors (dvv), as presented in the previous section, allow an accurate
representation of causality using server-based ids. Still, a dvv is kept for each concur-
rent version: {(dvv1,v1),(dvv2,v2), . . .}. We can go further in exploring the fact that
operations will mostly handle sets of dvv, and not single instances.

We propose now that the set of (dvv,version) for a given key in a replica node
is represented by a single instance of a container data type, a Dotted Version Vector
Set (dvvs), which describes causality for the whole set. dvvs factorizes out common
knowledge for the set of dvv described, and keeps only the strictly relevant information
in a single data structure. This results in not only a very succinct representation, but
also in reduced time complexity of operations: the concurrent values will be indexed
and ordered in the data structure, and traversal will be efficient.

5.1 From a Set of Clocks to a Clock for Sets

To obtain a logical clock for a set of versions, we will explore the fact that at each node,
the set of dvv as a whole can be represented with a compact vv. Formally this invariant
means that, for any set of dvv S, for each node id i, all dots for i in S form a contiguous
range up to some dot. Note that we can only assume to have this invariant, if we follow
some protocol rules enforced by our framework, described in detail in section 6.3.

Assuming this invariant, we obtain a logical clock for a set of (dvv,version) by per-
forming a two-step transformation of the sets of versions. In the first step, we compute
a single vv for the whole set — the top vector — by the pointwise maximum of the dots
and vv in the dvv’s; additionally, for each dvv in the set, we discard the vv component.
As an example, the following set:



{(((r,4),{(r,3),(s,5)}),v1),(((r,5),{(r,2),(s,3)}),v2),(((s,7),{(r,2),(s,6)}),v3)},

generates the top vector {(r,5),(s,7)} and is transformed to a set of (dot, version):

{((r,4),v1),((r,5),v2),((s,7),v3)}.

This first transformation has incurred in a loss of knowledge: the specific causal past
of each version. This knowledge is not, however, needed for our purposes. The insight
is that, to know whether to discard or not a pair (dot,version) (d,v) from some set when
comparing with another set of versions S, we do not need to know exactly which version
in S dominates d, but only that some version does; if version v is not present in S, but
its dot d is included in the causal information of the whole S (which is now represented
by the top vector), then we know that v was obsolete and can be removed.

In the second step, we use the knowledge that all dots for each server id, form
a contiguous sequence up to the corresponding top vector entry. Therefore, we can
associate a list of versions (siblings) to each entry in the top vector, where each dot is
implicitly derived by the corresponding version position in the list. In our example, the
whole set is then simply described as:

{(r,5, [v2,v1]),(s,7, [v3])},

where the head of each list corresponds to the more recently generated version at
the corresponding node. The first version has the dot corresponding to the maximum of
the top vector for that entry, the second version has the maximum minus one, and so on.

5.2 Definition

A dvvs is a set of triples (i,n, l), each containing a server id, an integer, and a list of
concurrent versions. It describes a set of versions and their dots, implicitly given by
the position in the list. It also describes only the knowledge about the collective causal
history, as given by the vv derived from the pairs (i,n).

6 Using dvv and dvvs in Distributed Key-Value Stores

In this section we show how to use logical clocks — in particular dvv and dvvs— in
modern distributed key-value stores, to accurate and efficiently track causality among
writes in each key. Our solution consists in a general workflow that a database must use
to serve get and put requests. Towards this, we define a kernel of operations over logical
clocks, on top of which the workflow is defined. We then instantiate these operations
over the logical clocks that we propose, first dvv and then dvvs.

We support both get and put operations, performing possibly several steps, as sketched
in Figure 2. Lets first define our kernel operations.
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Fig. 2: Generic execution paths for operations get and put.

Function sync The function sync takes two sets of clocks, each describing a set of
siblings, and returns the set of clocks for the siblings that remain after removing obso-
lete ones. It can have a general definition only in terms of the partial order on clocks,
regardless of their actual representation: Equation 1.

Function join The join function takes a set of clocks and returns a single clock that
describes the collective causal past of all siblings in the set received. An actual imple-
mentation of join is any function that corresponds to performing the union of all the
events (dots) in the ch corresponding to the set, i.e., that satisfies Equation 2.

Function discard The discard function takes a set of clocks S (representing siblings) and
a clock C (representing the context), and discards from S all siblings that are obsolete
because they are included in the context C. Similar to sync, discard has a simple general
definition only in terms of the partial order on clocks: Equation 3.

Function event The event function takes a set of clocks S (representing siblings) and a
clock C (representing the context) and a replica node identifier r; it returns a new clock
to represent a new version, given by a new unique event (dot) generated at r, and having
C in the causal past. An implementation must respect Equation 4.

sync(S1,S2) = {x ∈ S1 | @y ∈ S2.x < y}∪{x ∈ S2 | @y ∈ S1.x < y}. (1)

toch(join(S)) =
⋃
{toch(x) | x ∈ S}. (2)

discard(S,C) = {x ∈ S | x 6≤C}. (3)
toch(event(C,S,r)) = toch(C)∪{next(C,S,r)}, (4)

where next denotes the next new unique event (dot) generated with r, which can be
deterministically defined given C, S and r.

6.1 Serving a get

Functions sync and join are used to define the get operation: when a server receives a
get request, it may ask to a subset of replica nodes for their set of versions and clocks for
that key, to be then “merged” by applying sync pairwise; however, the server can skip
this phase if it deems it unnecessary for a successful response. Having the necessary



information ready, it is returned to the client both the values stripped from causality
information and the context as a result of applying join to the clocks. sync can also be
used at other times, such as anti-entropy synchronization between replica nodes.

6.2 Serving a put

When a put request is received, the server forwards the request to a replica node for
the given key, unless the server is itself a replica node. A non-replica node for the key
being written can coordinate a put request using vvclient for example, because it can
use the client Id to update the clock and then propagate the result to the replica nodes.
However, clocks using server Ids like vvserver, dvv and dvvs need the coordinating node
to generate an unique event in the clock, using its own Id. Not forwarding the request to
replica node, would mean that non-replica nodes Ids would be added to clocks, making
them linear with the total number of servers (e.g. hundreds) instead of only the replica
nodes (e.g. three).

When a replica node r, containing the set of clocks Sr for the given key, receives
a put request, it starts by removing obsolete versions from Sr, using function discard,
resulting in S′r; it also generates a new clock u for the new version with event; finally, u
is added to the set of non- obsolete versions S′r, resulting in S′′r .

The server can then save S′′r locally, propagate it to other replica nodes and success-
fully inform the client. The order of these three steps depends on the system’s durability
and replication parameters. Each replica node that receives S′′r , uses function sync to ap-
ply it against its own local versions.

For each key, the steps at the coordinator (discarding versions, generating a new one
and adding it to the non-obsolete set of versions) must be performed atomically when
serving a given put. This can be trivially obtained by local concurrency control, and does
not prevent full concurrency between local operations on different keys. For operations
over the same key, a replica can pipeline the steps of consecutive put for maximizing
throughput (note that some steps already need to be serialized, such as writing versions
to stable storage).

6.3 Maintaining Local Conciseness

As previously stated, both dvv and dvvs have an crucial invariant that servers must
maintain, in order to preserve their correctness and conciseness:

Invariant 1 (Local Clock Conciseness) Every key at any server has locally associated
with it a set of version(s) and clock(s), that collectively can be logically represented by
a contiguous set of causal events (e.g. represented as a vv).

To enforce this invariant, we made two design choices: (rule 1) a server cannot
respond to a get with a subset of the versions obtained locally and/or remotely, only
the entire set should be sent; (rule 2) a coordinator cannot replicate the new version to
remote nodes, without also sending all local concurrent versions (siblings).

Without the first rule, clients could update a key by reading and writing back a new
value with a context containing arbitrary gaps in its causal history. Neither dvv nor dvvs



would be expressive enough to support this, since dvv only supports one gap (between
the contiguous past and the dot) and dvvs does not support any.

Without the second rule, dvvs would clearly not work, since writes can create sib-
lings, which cannot be expressed separately with this clock. It could work with dvv,
however it would eventually result in some server not having a local concise represen-
tation for a key (e.g. the network lost a previous sibling), which in turn would make this
server unable to respond to get without contacting other servers (see rule 1); it would
degrade latency and in case of partitions, availability could also suffer.

6.4 Dotted Version Vectors

Functions sync and discard for dvv can be trivially implemented according to their gen-
eral definitions, by using the partial order for dvv, already defined in Section 4.2.

We will make use of some two functions: function ids returns the set of identifiers of
a pair from a vv, a dvv or a set of dvv; the maxdot function takes a dvv or set of dvv and
a server id and returns the maximum sequence number of the events from that server:

ids((i,_)) = {i},
ids(((i,_),v)) = {i}∪ ids(v),

ids(S) =
⋃
s∈S

ids(s).

maxdot(r,((i,n),v)) = max({n | i = r}∪{v[r]}),
maxdot(r,S) = max({0}∪{maxdot(r,s) | s ∈ S}).

Function join returns a simple vv, which is enough to accurately express the causal
information. Function event can be defined as simply generating a new dot and using
the context C, which is already a vv, for the causal past.

join(S) = {(i,maxdot(i,S)) | i ∈ ids(S)}.
event(C,S,r) = ((r,max(maxdot(r,S),C[r])+1),C).

6.5 Dotted Version Vector Sets

With dvvs, we need to make slight interface changes: functions now receive a single
dvvs, instead of a set of clocks; and event now inserts the newly generated version
directly in the dvvs.

For clarity and conciseness, we will assume R to be the complete set of replica
nodes ids, and any absent id i in a dvvs, is promoted implicitly to the element (i,0, []).
We will make use of the functions: first(n, l), that returns the first n elements of list l (or
the whole list if it has less than n elements, or an empty list for non-positive n); |l| for
the number of elements in l, [x | l] to append x at the head of list l; and function merge:

merge(n, l,n′, l′) =

{
first(n−n′+ |l′| , l), if n≥ n′,
first(n′−n+ |l| , l′), otherwise.



lww ch vvclient vvserver dvv dvvs
Space Õ(1) Õ(U) Õ(C×V ) Õ(R+V ) Õ(R×V ) Õ(R+V )

Time

event − Õ(1) Õ(1) Õ(1) Õ(V ) Õ(R)

join − Õ(U×V ) Õ(C×V ) Õ(1) Õ(R×V ) Õ(R)

discard − Õ(U×V ) Õ(C×V ) Õ(R) Õ(V ) Õ(R+V )

sync − Õ(U×V 2) Õ(C×V 2) Õ(R+V ) Õ(V 2) Õ(R+V )

PUT Õ(1) Õ(Sw×U×V 2) Õ(Sw×C×V 2) Õ(Sw×(R+V )) Õ(Sw×V 2) Õ(Sw×(R+V ))

GET Õ(1) Õ(Sr×U×V 2) Õ(Sr×C×V 2) Õ(Sr×(R+V )) Õ(R×V+Sr×V 2) Õ(Sr×(R+V ))

Causally Correct 7 3 3 7 3 3

Table 2: Space and time complexity, for different causality tracking mechanisms. U:
updates; C: writing clients; R: replica servers; V : (concurrent) versions; Sr and Sw: number
of servers involved in a GET and PUT, respectively.

Function discard takes a dvvs S and a vv C, and discards values in S obsoleted by
C. Similarly, sync takes two dvvs and removes obsolete values. Function join simply
returns the top vector, discarding the lists. Function event is now adapted to not only
produce a new event, but also to insert the new value, explicitly passed as parameter,
in the dvvs. It returns a new dvvs that contains the new value v, represented by a new
event performed by r and, therefore, appended at the head of the list for r. The context
is only used to propagate causal information to the top vector, as we no longer keep it
per version.

sync(S,S′) = {(r,max(n,n′),merge(n, l,n′, l′)) | r ∈ R,(r,n, l) ∈ S,(r,n′, l′) ∈ S′},
join(C) = {(r,n) | (r,n, l) ∈C},

discard(S,C) = {(r,n,first(n−C(r), l)) | (r,n, l) ∈ S},
event(C,S,r,v) = {(i,n+1, [v | l]) | (i,n, l) ∈ S | i = r}∪

{(i,max(n,C(i)), l) | (i,n, l) ∈ S | i 6= r}

7 Complexity and Evaluation

Table 2 shows space and time complexities of each causality tracking mechanism, for
a single key. Lets consider U the number of updates (writes), C the number of writing
clients, R the number of replica servers, V the number of concurrent versions (siblings)
and Sw and Sr the number of replicas nodes involved in a put and get, respectively. Note
that U and C are generally several orders of magnitude larger than R and V . The com-
plexity measures presented assume effectively constant time in accessing or updating
maps and sets. We also assume ordered maps/sets that allow a pairwise traversal linear
on the number of entries.

lww is constant both in time and space, since it does not track causality and ignores
siblings. Space-wise, ch and vvclient do not scale well, because they grow linearly with
writes and clients, respectively. dvv scales well given that typically there is little con-



currency per key, but it still needs a dvv per sibling. From the considered clocks, dvvs
and vvserver have the best space complexity, but the latter is not causally accurate.

Following our framework (Section 6), the time complexities are3:

– put is Õ(discard + event +Sw× sync) and get is Õ( join+Sr× sync);
– event is effectively Õ(1) for ch, vvclient and vvserver; is linear with V for dvv, because

it has to check each value’s clock; and is Õ(R) for dvvs because it also merges the
context to the local clock;

– join is constant for vvserver, since there is already only one clock; for ch, vvclient and
dvv it amounts to merging all their clocks into one; for dvvs, join simply extracts
the top vector from the clock;

– discard is only linear with V in dvv, because it can check the partial order of two
clocks in constant time; as for ch and vvclient, they have to compare the context
to every version’s clock; vvserver and dvvs always compare the context to a single
clock, and in addition, dvvs has to traverse lists of versions;

– sync resembles discard, but instead of comparing a set of versions to a single con-
text, it compares two sets of versions. Thus, ch, vvclient and dvv complexities are
similar to discard, but quadratic with V instead of linear. Since vvserver and dvvs
have only one clock, the complexity of sync is linear on V .

7.1 Evaluation

We implemented both dvv and dvvs in Erlang, and integrated it with our fork of the
NoSQL Riak datastore4. To evaluate the causality tracking accuracy of dvvs, and its
ability to overcome the sibling explosion problem, we setup two equivalent 5 node
Riak clusters, one using dvvs and the other vvserver.

We then ran a script5 equivalent to the following: Peter (P) and Mary (M) write
and read 50 times each to the same key, with read-write cycles interleaved (P writes
then reads, next M writes then reads, in alternation). Figure 3 shows the growth in the
number of siblings with every new write. The cluster with vvserver had an explosion of
false concurrency: 100 concurrent versions after 100 writes. Every time a client wrote
with the its latest context, the clock in the server was already modified, thus generating
and adding a sibling. However, with dvvs, although each write still conflicted with the
latest write from the other client, it detected and removed siblings that were causally
older (all the siblings present at the last read by that client). Thus, the cluster with dvvs
had only two siblings after the same 100 writes: the last write from each client.

Finally, dvvs has already seen early adoption in the industry, namely in Riak, where
it is the default logical clock mechanism in the latest release. As expected, it overcame
the sibling explosion problem that was affecting real world Riak deployments, when
multiple clients wrote on the same key.

3 For simplicity of notation, we use the big O variant: Õ, that ignores logarithmic factors in the
size of integer counters and unique ids.

4 https://github.com/ricardobcl/Dotted-Version-Vectors
5 https://gist.github.com/ricardobcl/4992839

https://github.com/ricardobcl/Dotted- Version-Vectors
https://gist.github.com/ricardobcl/4992839
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Fig. 3: Results of running two interleaved clients with 50 writes each.

8 Related Work

The role of causality in distributed systems was introduced by Lamport [11], estab-
lishing the foundation for the subsequent mechanisms and theory [11,14,20,19,2,4]. In
Section 3 we discussed the problems of solutions commonly used in eventually consis-
tent stores. In this section, we discuss other related work.

Variability in the number of entities. The basic vector based mechanisms can be
generalized to deal with a variable number of nodes or replicas. The common strategy
is to map identifiers to counters and handle dynamism in the set of identifiers. Additions
depend on the generation of unique identifiers. Removals can require communication
with several other servers [7], or to a single server [15,1]. While dvv and dvvs avoid
identifier assignment to clients, these techniques could support changes in the set of
servers.

Exceptions on conflicts. Some systems just detect the concurrent PUT operations from
different clients and reject the update (e.g. version control systems such as CVS and
subversion) or keep the updates but do not allow further accesses until the conflict is
solved (e.g. original version of Coda [8]); in these cases, using version vectors (vv) with
one entry per server is sufficient. However, these solutions sacrifice write availability
which is a key “feature” of modern geo-replicated databases.

Compacting the representation. In general, using a format that is more compact than
the set of independent entities that can register concurrency, leads to lossy representa-
tion of causality [4]. Plausible clocks [21] condense event counting from multiple repli-
cas over the same vector entry, resulting in false concurrency. Several approaches for
removing entries that are not necessary have been proposed, some being safe but requir-
ing running consensus (e.g. Roam [18]), and others fast but unsafe (e.g. Dynamo [5])
potentially leading to causality errors.

Extensions and added expressiveness. In Depot [12], the vv associated with each up-
date only includes the entries that have changed since the previous update in the same
node. However, each node still needs to maintain vv that include entries for all clients
and servers; in a similar scenario, the same approach could be used as a complement to
our solution. Other systems explore the fact that they manage a large number of objects



to maintain less information for each object. WinFS [13] maintains a base vv for all
objects is the file system, and for each object it maintains only the difference for the
base in a concise vv. Cimbiosys [17] uses the same technique in a peer-to-peer system.
These systems, as they maintain only one entry per server, cannot generate two vv for
tagging concurrent updates submitted to the same server from different clients, as dis-
cussed in Section 3 with vvserver. WinFS includes a mechanism to deal with disrupted
synchronizations that allow to encode non sequential causal histories by registering ex-
ceptions to the events registered in vv; e.g. {a1,a2,b1,c1,c2,c4,c7} could be represented
by {(a,2),(b,1),(c,7)} plus exceptions {c3,c5,c6}. However, using dvv with its system
workflow, at most a single update event that is outside the vv is needed, and thus a single
dot per version is enough. dvvs goes further, by condensing all causal information in
a vv, while being able to keep multiple implicit dots. This ensures just enough expres-
siveness to allow any number of concurrent clients and still avoids the size complexity
of encoding a generic non sequential ch. Wang et. al. [22] have proposed a variant of
vv with O(1) comparison time (like dvv), but the vv entries must be kept ordered which
prevents constant time for other operations. Furthermore, it also incurs in the problems
associate with vvserver, which we solved with dvvs.

9 Closing Remarks

We have presented in detail Dotted Version Vectors, a novel solution for tracking causal-
ity among update events. The base idea is to add an extra isolated event over a causal
history. This is sufficiently expressive to capture all causality established among con-
current versions (siblings), while keeping its size linear with the number of replicas.

We then proposed a more compact representation — Dotted Version Vector Sets —
which allows for a single data structure to accurately represent causal information for a
set of siblings. Its space and time complexity is only linear with the number of replicas
plus siblings, better than all current mechanisms that accurately track causality.

Finally, we introduced a general workflow for requests to distributed data stores.
It abstracts and factors the essential operations that are necessary for causality tracking
mechanisms. We then implemented both our mechanisms using those kernel operations.
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