4,439 research outputs found

    M-theory from the superpoint

    Get PDF
    The “brane scan” classifies consistent Green–Schwarz strings and membranes in terms of the invariant cocycles on super Minkowski spacetimes. The “brane bouquet” generalizes this by consecutively forming the invariant higher central extensions induced by these cocycles, which yields the complete fundamental brane content of string/M-theory, including the D-branes and the M5-brane, as well as the various duality relations between these. This raises the question whether the super Minkowski spacetimes themselves arise as maximal invariant central extensions. Here, we prove that they do. Starting from the simplest possible super Minkowski spacetime, the superpoint, which has no Lorentz structure and no spinorial structure, we give a systematic process of consecutive “maximal invariant central extensions” and show that it discovers the super Minkowski spacetimes that contain superstrings, culminating in the 10- and 11-dimensional super Minkowski spacetimes of string/M-theory and leading directly to the brane bouquet

    Electron Transfer in Porphyrin Complexes in Different Solvents

    Full text link
    The electron transfer in different solvents is investigated for systems consisting of donor, bridge and acceptor. It is assumed that vibrational relaxation is much faster than the electron transfer. Electron transfer rates and final populations of the acceptor state are calculated numerically and in an approximate fashion analytically. In wide parameter regimes these solutions are in very good agreement. The theory is applied to the electron transfer in H2P−ZnP−Q{\rm H_2P-ZnP-Q} with free-base porphyrin (H2P{\rm H_2P}) being the donor, zinc porphyrin (ZnP{\rm ZnP}) the bridge, and quinone (Q{\rm Q}) the acceptor. It is shown that the electron transfer rates can be controlled efficiently by changing the energy of the bridging level which can be done by changing the solvent. The effect of the solvent is determined for different models.Comment: 28 pages + 5 figures, submitted to J. Phys. Chem. For more details see the Ph. D. thesis in quant-ph archive http://xxx.lanl.gov/abs/quant-ph/000100

    Central extensions of mapping class groups from characteristic classes

    No full text
    Tangential structures on smooth manifolds, and the extension of mapping class groups they induce, admit a natural formulation in terms of higher (stacky) differential geometry. This is the literal translation of a classical construction in differential topology to a sophisticated language, but it has the advantage of emphasizing how the whole construction naturally emerges from the basic idea of working in slice categories. We characterize, for every higher smooth stack equipped with tangential structure, the induced higher group extension of the geometric realization of its higher automor- phism stack. We show that when restricted to smooth manifolds equipped with higher degree topological structures, this produces higher extensions of homotopy types of diffeomorphism groups. Passing to the groups of connected components, we obtain abelian extensions of mapping class groups and we derive sufficient conditions for these being central. We show as a special case that this provides an elegant re-construction of Segal’s approach to Z\mathbb{Z} -extensions of mapping class groups of surfaces that provides the anomaly cancellation of the modular functor in Chern-Simons theory. Our construction generalizes Segal’s approach to higher central extensions of mapping class groups of higher dimensional manifolds with higher tangential structures, expected to provide the analogous anomaly cancellation for higher dimensional TQFTs

    DDF and Pohlmeyer invariants of (super)string

    Full text link
    We show how the Pohlmeyer invariants of the bosonic string are expressible in terms of DDF invariants. Quantization of the DDF observables in the usual way yields a consistent quantization of the algebra of Pohlmeyer invariants. Furthermore it becomes straightforward to generalize the Pohlmeyer invariants to the superstring as well as to all backgrounds which allow a free field realization of the worldsheet theory.Comment: 17 pp, minor typos corrected, references to papers by Isaev and Borodulin added, which contain essentially the same results as reported her

    Spectral and Diffusive Properties of Silver-Mean Quasicrystals in 1,2, and 3 Dimensions

    Get PDF
    Spectral properties and anomalous diffusion in the silver-mean (octonacci) quasicrystals in d=1,2,3 are investigated using numerical simulations of the return probability C(t) and the width of the wave packet w(t) for various values of the hopping strength v. In all dimensions we find C(t)\sim t^{-\delta}, with results suggesting a crossover from \delta<1 to \delta=1 when v is varied in d=2,3, which is compatible with the change of the spectral measure from singular continuous to absolute continuous; and we find w(t)\sim t^{\beta} with 0<\beta(v)<1 corresponding to anomalous diffusion. Results strongly suggest that \beta(v) is independent of d. The scaling of the inverse participation ratio suggests that states remain delocalized even for very small hopping amplitude v. A study of the dynamics of initially localized wavepackets in large three-dimensional quasiperiodic structures furthermore reveals that wavepackets composed of eigenstates from an interval around the band edge diffuse faster than those composed of eigenstates from an interval of the band-center states: while the former diffuse anomalously, the latter appear to diffuse slower than any power law.Comment: 11 pages, 10 figures, 1 tabl

    Direct measurement of diurnal polar motion by ring laser gyroscopes

    Get PDF
    We report the first direct measurements of the very small effect of forced diurnal polar motion, successfully observed on three of our large ring lasers, which now measure the instantaneous direction of Earth's rotation axis to a precision of 1 part in 10^8 when averaged over a time interval of several hours. Ring laser gyroscopes provide a new viable technique for directly and continuously measuring the position of the instantaneous rotation axis of the Earth and the amplitudes of the Oppolzer modes. In contrast, the space geodetic techniques (VLBI, SLR, GPS, etc.) contain no information about the position of the instantaneous axis of rotation of the Earth, but are sensitive to the complete transformation matrix between the Earth-fixed and inertial reference frame. Further improvements of gyroscopes will provide a powerful new tool for studying the Earth's interior.Comment: 5 pages, 4 figures, agu2001.cl

    Integrable impurities for an open fermion chain

    Full text link
    Employing the graded versions of the Yang-Baxter equation and the reflection equations, we construct two kinds of integrable impurities for a small-polaron model with general open boundary conditions: (a) we shift the spectral parameter of the local Lax operator at arbitrary sites in the bulk, and (b) we embed the impurity fermion vertex at each boundary of the chain. The Hamiltonians with different types of impurity terms are given explicitly. The Bethe ansatz equations, as well as the eigenvalues of the Hamiltonians, are constructed by means of the quantum inverse scattering method. In addition, we discuss the ground-state properties in the thermodynamic limit.Comment: 20 pages, 4 figure

    A laser gyroscope system to detect the Gravito-Magnetic effect on Earth

    Full text link
    Large scale square ring laser gyros with a length of four meters on each side are approaching a sensitivity of 1x10^-11 rad/s/sqrt(Hz). This is about the regime required to measure the gravitomagnetic effect (Lense Thirring) of the Earth. For an ensemble of linearly independent gyros each measurement signal depends upon the orientation of each single axis gyro with respect to the rotational axis of the Earth. Therefore at least 3 gyros are necessary to reconstruct the complete angular orientation of the apparatus. In general, the setup consists of several laser gyroscopes (we would prefer more than 3 for sufficient redundancy), rigidly referenced to each other. Adding more gyros for one plane of observation provides a cross-check against intra-system biases and furthermore has the advantage of improving the signal to noise ratio by the square root of the number of gyros. In this paper we analyze a system of two pairs of identical gyros (twins) with a slightly different orientation with respect to the Earth axis. The twin gyro configuration has several interesting properties. The relative angle can be controlled and provides a useful null measurement. A quadruple twin system could reach a 1% sensitivity after 3:2 years of data, provided each square ring has 6 m length on a side, the system is shot noise limited and there is no source for 1/f- noise.Comment: 9 pages, 6 figures. 2010 Honourable mention of the Gravity Research Foundation; to be published on J. Mod. Phys.

    The Anderson model of localization: a challenge for modern eigenvalue methods

    Get PDF
    We present a comparative study of the application of modern eigenvalue algorithms to an eigenvalue problem arising in quantum physics, namely, the computation of a few interior eigenvalues and their associated eigenvectors for the large, sparse, real, symmetric, and indefinite matrices of the Anderson model of localization. We compare the Lanczos algorithm in the 1987 implementation of Cullum and Willoughby with the implicitly restarted Arnoldi method coupled with polynomial and several shift-and-invert convergence accelerators as well as with a sparse hybrid tridiagonalization method. We demonstrate that for our problem the Lanczos implementation is faster and more memory efficient than the other approaches. This seemingly innocuous problem presents a major challenge for all modern eigenvalue algorithms.Comment: 16 LaTeX pages with 3 figures include
    • 

    corecore