
ar
X

iv
:1

70
2.

01
77

4v
2 

 [
he

p-
th

] 
 2

5 
Ju

n 
20

18

M-Theory from the Superpoint

John Huerta∗, Urs Schreiber†

November 14, 2018

Abstract

The “brane scan” classifies consistent Green–Schwarz strings and membranes in terms of
the invariant cocycles on super-Minkowski spacetimes. The “brane bouquet” generalizes this
by consecutively forming the invariant higher central extensions induced by these cocycles,
which yields the complete fundamental brane content of string/M-theory, including the D-
branes and the M5-brane, as well as the various duality relations between these. This raises
the question whether the super-Minkowski spacetimes themselves arise as maximal invariant
central extensions. Here we prove that they do. Starting from the simplest possible super-
Minkowski spacetime, the superpoint, which has no Lorentz structure and no spinorial structure,
we give a systematic process of repeated “maximal invariant central extensions”, and show that
it discovers the super-Minkowski spacetimes that contain superstrings, culminating in the 10-
and 11-dimensional super-Minkowski spacetimes of string/M-theory and leading directly to the
brane bouquet.
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1 Introduction

In his “vision talk” at the annual string theory conference in 2014, Greg Moore highlighted the
following open question in string theory [42, Section 9]:

Perhaps we need to understand the nature of time itself better. [. . . ] One natural way to
approach that question would be to understand in what sense time itself is an emergent
concept, and one natural way to make sense of such a notion is to understand how
pseudo-Riemannian geometry can emerge from more fundamental and abstract notions
such as categories of branes.

We are going to tell an origin story for spacetime, in which it emerges from the simplest kind of
supermanifold: the superpoint, denoted R0|1. This is the supermanifold with no bosonic coordinates,
and precisely one fermionic coordinate. From this minimal mathematical space, which has no Lorentz
structure and no spinorial structure, we will give a systematic process to construct super-Minkowski
spacetimes up to dimension 11, complete with their Lorentz structures and spinorial structures.
Indeed this is the same mathematical mechanism that makes, for instance, the M2-brane and then
the M5-brane emerge from 11d spacetime. It is directly analogous to the D0-brane condensation by
which 11d spacetime emerges out of the type IIA spacetime of dimension 10.

To make all this precise, first recall that the super p-branes of string theory and M-theory, in
their incarnation as ‘fundamental branes’ or ‘probe branes’, are mathematically embodied in terms
of what are called ‘κ-symmetric Green–Schwarz-type functionals’. See Sorokin [50] for review and
further pointers.

Not long after Green and Schwarz [32] discovered their celebrated action functional for the su-
perstring, Henneaux and Mezincescu observed [33] that the previously somewhat mysterious term
in the Green–Schwarz action, the one which ensures its κ-symmetry, is in a fact nothing but the
WZW-type functional for super-Minkowski spacetime regarded as a supergroup. This is mathe-
matically noteworthy, because WZW-type functionals are a natural outgrowth of super Lie algebra
cohomology [3, 27]. This suggests that the theory of super p-branes is to some crucial extent a topic
purely in super Lie theory, hence amenable to mathematical precision and classification tools.

Indeed, Azcárraga and Townsend [4] later showed (following Achúcarro et al. [1]) that it is the
Spin(d− 1, 1)-invariant super Lie algebra cohomology of super-Minkowski spacetime which classifies
the Green–Schwarz superstring [32], the Green–Schwarz-type supermembrane [10], as well as all
their double dimensional reductions [22] [29, Section 2], a fact now known as the “old brane scan”
[19].1

For example, for minimal spacetime supersymmetry there is, up to rescaling, a single non-trivial
invariant (p+2)-cocycle corresponding to a super p-brane in d dimensional spacetime, for just those
pairs of (d, p) with d ≤ 11 that are marked by an asterisk in the following table.

1 The classification of these cocycles is also discussed by Movshev et al. [43] and Brandt [12, 13, 14]. A unified
derivation of the cocycle conditions is given by Baez and Huerta [7, 8]. See also Foot and Joshi [31].
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d\p 1 2 3 4 5 6 7 8 9

11 ⋆

10 ⋆ ⋆

9 ⋆

8 ⋆

7 ⋆

6 ⋆ ⋆

5 ⋆

4 ⋆ ⋆

3 ⋆

Table 1: The old brane scan.

Here the entry at d = 10 and p = 1 corresponds to the Green–Schwarz superstring, the entry at
d = 10 and p = 5 to the NS5-brane, and the entry at d = 11, p = 2 to the M2-brane of M-theory
fame [21, Chapter II]. Moving down and to the left on the table corresponds to double dimensional
reduction [22] [29, Section 2].

This result is striking in its achievement and its failure: On one hand it is remarkable that the
existence of super p-brane species may be reduced to a mathematical classification of super Lie
algebra cohomology. But on the other hand, it is disconcerting that this classification misses so
many p-brane species that are thought to exist: The M5-brane in d = 11 and all the D-branes in
d = 10 are absent from the old brane scan, as are all their double dimensional reductions.2

However, it turns out that this problem is not a shortcoming of super Lie theory as such, but
only of the tacit restriction to ordinary super Lie algebras, as opposed to ‘higher’ super Lie algebras,
also called ‘super Lie n-algebras’ or ‘super L∞-algebras’ [36, 27].3

One way to think of super Lie n-algebras is as the answer to the following question: Since, by
a classical textbook fact, 2-cocycles on a super Lie algebra classify its central extensions in the
category of super Lie algebras, what do higher degree cocycles classify? The answer ([27, Prop. 3.5]
based on [25, Theorem 3.1.13] and [6, Theorem 57]) is that higher degree cocycles classify precisely
higher central extensions, formed in the homotopy theory of super L∞-algebras. But in fact the
Chevalley–Eilenberg algebras for the canonical models of these higher extensions are well known
in parts of the supergravity literature, these are just the “free differential algebras”4 or “FDA”s of
D’Auria and Fré [2].

Hence every entry in the “old brane scan”, since it corresponds to a cocycle, gives a super Lie
n-algebraic extension of super-Minkowski spacetime. Notably the 3-cocycles for the superstring
give rise to super Lie 2-algebras and the 4-cocycles for the supermembrane give rise to super Lie
3-algebras. These are super-algebraic analogs of the string Lie 2-algebra [6] [26, appendix] which
controls the Green–Schwarz anomaly cancellation of the heterotic string [48], and hence they are

2 A partial completion of the old brane scan can be achieved by classifying superconformal structures that may
appear in the near horizon geometry of ‘solitonic’ or ‘black’ p-branes [11, 20].

3Notice that these are Lie n-algebras in the sense of Stasheff [38, 39, 47] as originally found in string field theory
by Zwiebach [54, Section 4] not “n-Lie algebras” in the sense of Filippov. However, the two notions are not unrelated.
At least the Filippov 3-Lie algebras that appear in the Bagger–Lambert model for coincident solitonic M2-branes may
naturally be understood as Stasheff Lie 2-algebras equipped with a metric form [44, Section 2].

4Unfortunately, the “free differential algebras” of D’Auria and Fré are not free. In the parlance of modern mathe-
matics, they are differential graded commutative algebras, where the underlying graded commutative algebra is free,
but the differential is not. We will thus refer to them as “FDA”s, with quotes.

3



called the superstring Lie 2-algebra [36], to be denoted string:

d\p 1

10 ⋆ ↔

string

��

extended super Minkowski
super Lie 2-algebra

R9,1|16 super Minkowski
super Lie algebra

and the supermembrane Lie 3-algebra, denoted m2brane:

d\p 2

11 ⋆ ↔

m2brane

��

extended super Minkowski
super Lie 3-algebra

R10,1|32 super Minkowski
super Lie algebra

A discussion of these structures as objects in higher Lie theory appears in Huerta’s thesis [36]. Note
that string comes in several variants, denoted stringIIA, stringIIB and stringhet, corresponding to the
type IIA, IIB, and heterotic variants of string theory. In their dual incarnation as “FDA”s, the string
and m2brane algebras are the extended super-Minkowski spacetimes considered by Chryssomalakos
et al. [16]. We follow their idea, and call extensions of super-Minkowski spacetime to super Lie
n-algebras extended super-Minkowski spacetimes.

Now that each entry in the old brane scan is identified with a higher super Lie algebra in
this way, something remarkable happens: new cocycles appear on these extended super-Minkowski
spacetimes, cocycles which do not show up on plain super-Minkowski spacetime itself. (In homotopy
theory, this is a familiar phenomenon: it is the hallmark of the construction of the ‘Whitehead tower’
of a topological space.)

And indeed, in turns out that the new invariant cocycles thus found do correspond to the branes
that were missing from the old brane scan [27]: On the super Lie 3-algebra m2brane there appears
an invariant 7-cocycle, which corresponds to the M5-brane, on the super Lie 2-algebra stringIIA
there appears a sequence of (p + 2)-cocycles for p ∈ {0, 2, 4, 6, 8}, corresponding to the type IIA
D-branes, and on the superstring Lie 2-algebra stringIIB there appears a sequence of (p+2)-cocycles
for p ∈ {1, 3, 5, 7, 9}, corresponding to the type IIB D-branes. Under the identification of super
Lie n-algebras with formal duals of “FDA”s, the algebra behind this statement is in fact an old
result: For the M5-brane and the type IIA D-branes this is due to Chryssomalakos et al. [16], while
for the type IIB D-branes this is due to Sakaguchi [46, Section 2]. In fact, the 7-cocycle on the
supermembrane Lie 3-algebra that corresponds to the M5-brane [9] was already discovered in the
1982 paper by D’Auria and Fré [2, Equations (3.27) and (3.28)].

Each of these cocycles gives a super Lie n-algebra extension. If we name these extensions by
the super p-brane species whose WZW-term is given by the cocycle, then we obtain the following
diagram in the category of super L∞-algebras:
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m5brane

��
m2brane

��

d5brane

��✸
✸✸

✸✸
✸✸

✸✸
✸✸

✸✸
✸✸

✸ d3brane

��

d1brane

��✟✟
✟✟
✟✟
✟✟
✟✟
✟✟
✟✟
✟✟

d0brane

��✻
✻✻

✻✻
✻✻

✻✻
✻✻

✻✻
✻✻

✻ d2brane

��

d4brane

��☛☛
☛☛
☛☛
☛☛
☛☛
☛☛
☛☛
☛☛

d7brane

""❋
❋❋

❋❋
❋❋

❋❋
R10,1|32

��✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺ d6brane

||①①
①①
①①
①①
①

d9brane // stringIIB

##❍
❍❍

❍❍
❍❍

❍
stringhet

��

stringIIA

{{✈✈✈
✈✈
✈✈
✈

d8braneoo

R9,1|16+16 oo
oo

R9,1|16 //
//
R9,1|16+16

Hence in the context of higher super Lie algebra, the “old brane scan” is completed to a tree
of consecutive higher central extensions emanating out of the super-Minkowski spacetimes, with
one leaf for each brane species in string/M-theory and with one edge whenever one fundamental
brane species may end on another, with its boundary sourcing a vector- or tensor-multiplet on the
worldvolume of the other brane [27, Section 3]. This is the fundamental brane bouquet [27, Def. 3.9
and Section 4.5]. (The black branes and their more general intersection laws are obtained from this
by passing to equivariant cohomology [37], but this will not concern us here.)

Interestingly, a fair bit of the story of string/M-theory is encoded in this purely super Lie-
n-algebraic mathematical structure. This includes in particular the pertinent dualities: the KK-
reduction between M-theory and type IIA theory, the HW-reduction between M-theory and heterotic
string theory, the T-duality between type IIA and type IIB, the S-duality of type IIB, and the relation
between type IIB and F-theory. All of these are reflected as equivalences of super Lie n-algebras
obtained from the brane bouquet [28, 29, 37]. The diagram of super L∞-algebras that reflects these
L∞-equivalences looks like a candidate to fill Polchinski’s famous schematic picture of M-theory [45,
Figure 1] [53, Figure 4] with mathematical life:

D0brane

**❯❯❯
❯❯❯❯

❯❯❯❯
❯❯❯❯

❯❯❯
D2brane

%%▲▲
▲▲

▲▲
▲▲

▲▲
D4brane

��

D6brane

yyrrr
rr
rr
rr
r

D8brane

tt✐✐✐✐
✐✐✐✐

✐✐✐✐
✐✐✐✐

✐✐
KK

@@✂✂✂✂✂✂✂✂✂ stringIIA
d=10

N=16+16

��

OO

T

��

HW

��

m5brane // m2brane d=11
N=32

// Rd−1,1|N

ns5brane

d=10
N=16❢❢❢❢❢❢❢

33❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢

stringhet

d=10
N=16✐✐

44✐✐✐✐✐✐✐✐✐✐✐✐

stringIIB

d=10
N=16+16

✝✝✝✝

BB✝✝✝✝✝✝✝✝✝✝✝

(p, q)stringIIB

d=10
N=16+16

OO

Dstring

d=10
N=16+16✽✽✽✽

\\✽✽✽✽✽✽✽✽✽✽✽

(p, q)1brane

44❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥
(p, q)3brane

99sssssssss
(p, q)5brane

OO

(p, q)7brane

ee❑❑❑❑❑❑❑❑❑

(p, q)9brane

jj❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚

oo
S

//
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Now note that not all of the super p-brane cocycles are of higher degree. One of them, the cocycle
for the D0-brane, is an ordinary 2-cocycle. Accordingly, the extension that it classifies is an ordinary
super Lie algebra extension. In fact one finds that the D0-cocycle classifies the central extension of
10-dimensional type IIA super-Minkowski spacetime to the 11-dimensional spacetime of M-theory.
We can express these relationships by noting the following diagram of super Lie n-algebras is, in the
sense of homotopy theory, a ‘homotopy pullback’:

d0brane

(pb)

super L∞-extension
classified by
D0-cocycle

��✻
✻✻

✻✻
✻✻

✻✻
✻✻

✻✻
✻✻

✻

zz✈✈
✈✈
✈✈
✈✈

R10,1|32

M-theory
spacetime
extension

��✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺

stringIIA

super L∞-extension
classified by
type IIA string cocycle

{{✈✈
✈✈
✈✈
✈✈

R9,1|16+16

This is the precise way to say that the D0-brane cocycle on stringIIA comes from pulling back an

ordinary 2-cocycle on R9,1|16+16, which in turn is extended to R10,1|32 by the same 2-cocycle. We
may think of this as a super L∞-theoretic incarnation of the observation that D0-brane condensation
in type IIA string theory leads to the growth of the 11th dimension of M-theory [27, Remark 4.6],
as explained by Polchinski [45, Section 6].

This raises an evident question: Might there be a precise sense in which all dimensions of
spacetime originate from the condensation of some kind of 0-branes in this way? Is the brane
bouquet possibly rooted in the superpoint? Such that the ordinary super-Minkowski spacetimes,
not just extended super-Minkowski spacetimes such as string and m2brane, arise from a process of
0-brane condensation “from nothing”?

Since the brane bouquet proceeds at each stage by forming maximal invariant extensions, the
mathematical version of this question is: Is there a sequence of maximal invariant central extensions
that start at the super-point and produce the super-Minkowski spacetimes in which superstrings and
supermembranes exist?

To appreciate the substance of this question, notice that it is clear that every super-Minkowski
spacetime is some central extension of a superpoint [16, Section 2.1]: the super-2-cocycle classifying
this extension is just the super-bracket that turns two supercharges into a translation generator. But
there are many central extensions of superpoints that are nothing like super-Minkowski spacetimes.
The question is whether the simple principle of consecutively forming maximal invariant central
extensions of super-Lie algebras (as opposed to more general central extensions) discovers spacetime.

We shall prove that this is the case: this is our main result, Theorem 14. It says that in the
following diagram of super-Minkowski super Lie algebras, each diagonal morphism is singled out as

6



being the maximal invariant central extension of the super Lie algebra that it points to:5

R10,1|32

��✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽

R9,1|16+16 oo
oo

R9,1|16

##●
●●

●●
●●

● //
//
R9,1|16+16

R5,1|8

{{✇✇
✇✇
✇✇
✇✇
✇

R5,1|8+8//
//

R3,1|4+4 oo
oo

R3,1|4

{{✈✈
✈✈
✈✈
✈✈
✈

R2,1|2+2 oo
oo

R2,1|2

{{✈✈
✈✈
✈✈
✈✈
✈

R0|1+1 oo
oo

R0|1

Note that we do not specify by hand the groups under which these extensions are to be invariant.
Instead these groups are being discovered stagewise, along with the spacetimes. Namely we say
(Definition 7) that an extension ĝ → g is invariant if it is invariant with respect to the ‘simple
external automorphisms’ inside the automorphism group of g (Definition 1). This is a completely
intrinsic concept of invariance.

We show that for g a super-Minkowski spacetime, then this intrinsic group of simple external au-
tomorphisms is the spin group, the double cover of the connected Lorentz group in the corresponding
dimension—this is Proposition 6, read at the Lie group level. This may essentially be folklore [24,
p. 95], but it seems worthwhile to pinpoint this statement. It says that as the extension process
grows out of the superpoint, not only are the super-Minkowski spacetimes being discovered as su-
pertranslation supersymmetry groups, but also their Lorentzian metric structure is being discovered
alongside.

super-Minkowski
super Lie algebra

simple
external automorphisms

induced
Cartan-geometry

torsion
freeness

Rd−1,1|N Spin(d− 1, 1) supergravity
in d = 11:

Einstein’s equations

To highlight this, observe that with every pair (V,G) consisting of a super vector space V and
a subgroup G ⊂ GL(V ) of its general linear supergroup, there is associated a type of geometry,
namely the corresponding Cartan geometry: A (V,G)-geometry is a supermanifold with tangent
spaces isomorphic to V and equipped with a reduction of the structure group of its super frame
bundle from GL(V ) to G [41].

Now for the pairs (Rd−1,1|N , Spin(d − 1, 1)) that emerge out of the superpoint according to
Proposition 6 and Theorem 14, this is what encodes a field configuration of d-dimensional N -
supersymmetric supergravity: Supermanifolds locally modeled on Rd−1,1|N are precisely what un-
derlie the superspace formulation of supergravity, and the reduction of its structure group to the

5 The double arrows stand for the two different canonical inclusions of Rd−1,1|N into Rd−1,1|N+N , being the
identity on Rd−1,1 and sending N identically either to the first or to the second copy in the direct sum N +N .

7



Spin(d − 1, 1)-cover of the connected Lorentz group SO0(d − 1, 1) is equivalently a choice of super-
vielbein field, which is a field configuration of supergravity.

Observe also that the mathematically most natural condition to demand from such a super-
Cartan geometry is that it be ‘torsion free’ [41]. In view of this it is worthwhile to recall the
remarkable theorem of Howe [35], based on Candiello and Lechner [15]: For d = 11 the equations of
motion of supergravity are implied by the torsion-freeness of the super-vielbein.

In summary, Theorem 14 shows that the brane bouquet, and with it at least a fair chunk of
the structure associated with the word “M-theory”, has its mathematical root in the superpoint,
and Proposition 6 adds that as the superspacetimes grow out of the superpoint, they consecutively
discover their relevant Lorentzian metric structure and spinorial structure, and finally their super-
gravity equations of motion.

m5brane

��
m2brane

��

d5brane

��✸
✸✸

✸✸
✸✸

✸✸
✸✸

✸✸
✸✸

✸ d3brane

��

d1brane

��✟✟
✟✟
✟✟
✟✟
✟✟
✟✟
✟✟
✟✟

d0brane

(pb)

��✻
✻✻

✻✻
✻✻

✻✻
✻✻

✻✻
✻✻

✻

zz✉✉✉
✉✉
✉✉
✉✉

d2brane

��

d4brane

��☛☛
☛☛
☛☛
☛☛
☛☛
☛☛
☛☛
☛☛

d7brane

""❋
❋❋

❋❋
❋❋

❋❋
R10,1|32

��✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺ d6brane

||①①
①①
①①
①①
①

d9brane // stringIIB

##❍
❍❍

❍❍
❍❍

❍
stringhet

��

stringIIA

{{✈✈✈
✈✈
✈✈
✈

d8braneoo

R9,1|16+16 oo
oo

R9,1|16

##❍
❍❍

❍❍
❍❍

❍❍
//
//
R9,1|16+16

R5,1|8

{{✈✈
✈✈
✈✈
✈✈
✈

R5,1|8+8//
//

R3,1|4+4 oo
oo

R3,1|4

zz✈✈
✈✈
✈✈
✈✈
✈

R2,1|2+2 oo
oo

R2,1|2

zz✈✈
✈✈
✈✈
✈✈
✈

R0|1+1 oo
oo

R0|1

2 Automorphisms of super-Minkowski spacetimes

For our main result, Theorem 14, we need to know the automorphisms (Definition 18) of the ‘super
Minkowski super Lie algebras’ Rd−1,1|N . We give the precise definition of Rd−1,1|N as Definition 22,
but for the reader’s convenience, we quickly recall the idea. The super-Minkowski super Lie algebra

8



Rd−1,1|N is the version of Minkowski spacetime, Rd−1,1, used when discussing supersymmetry. Unlike
Minkowski spacetime, which is merely a vector space, super-Minkowski is a super Lie algebra: it has
an underlying vector space that is Z2-graded, with an even and odd part:

Rd−1,1|N
even = Rd−1,1, R

d−1,1|N
odd = N.

Here, Rd−1,1 is ordinary Minkowski spacetime, while N is a spinor representation of Spin(d− 1, 1).
The Lie group Spin(d − 1, 1) is the double cover of the connected Lorentz group, SO0(d − 1, 1), so
it also acts on Rd−1,1. The Lie bracket on this super Lie algebra is nonzero only on N , and consists
of a pairing turning spinors into vectors:

[−,−] : N ⊗N → Rd−1,1

which is required to be an equivariant map between representations of Spin(d− 1, 1).
Our key idea is that we can extract the Lorentz symmetries of Rd−1,1|N merely from its structure

as a super Lie algebra, by looking at a particular piece of the automorphisms we call the ‘simple
external automorphisms’. This result may be folklore (see Evans [24, p. 95]), but since we did not
find a full account in the literature, we provide a proof here. After some simple lemmas, the result
is Proposition 6. To begin, we define the ‘simple external automorphisms’ of a super Lie algebra.

Definition 1 (external and internal automorphisms, admissible algebras). Let g be a super Lie
algebra (Def. 15), and let aut(g) be the ordinary Lie algebra of infinitesimal automorphisms of g
which preserve the Z2-grading (Prop. 19). We define the Lie algebra int(g) of internal automorphisms
of g as the Lie subalgebra of aut(g) which acts trivially on the even part geven. In other words, it is
the Lie subalgebra of even derivations of g which vanish on geven. This is clearly an ideal, so that
the quotient

ext(g) := aut(g)/int(g)

of all automorphisms by internal ones is again a Lie algebra, the Lie algebra of external automor-
phisms of g. We thus have a short exact sequence:

0 → int(g) → aut(g) → ext(g) → 0 .

We will say that g is admissible if this sequence splits and the external automorphism algebra
ext(g) is reductive. For an admissible algebra g, we can thus view ext(g) as a subalgebra of aut(g).
Moreover, because we demand ext(g) be reductive, ext(g) decomposes as a direct sum of its center
and its maximal semisimple Lie subalgebra. We thus define the simple external automorphisms

extsimp(g) →֒ ext(g) →֒ aut(g)

to be the semisimple part of ext(g).

Example 2. The internal automorphisms (Definition 1) of the super-Minkowski super Lie algebra
Rd−1,1|N are the ‘R-symmetries’ from the physics literature [30, p. 56].

Because the super-Minkowski super Lie algebra Rd−1,1|N is built from Spin(d− 1, 1) representa-
tions and Spin(d− 1, 1)-equivariant maps, Spin(d− 1, 1) acts on this super Lie algebra by automor-
phism. It thus acts on the full automorphism group Aut(Rd−1,1|N) by conjugation, and on the Lie
algebra aut(Rd−1,1|N) by the adjoint action. These facts are key for our first lemma.

Lemma 3. Consider a super-Minkowski super Lie algebra Rd−1,1|N (Definition 22) in any dimension
d ≥ 3 and for any real spinor representation N of Spin(d−1, 1). Then the automorphism Lie algebra
aut(Rd−1,1|N) (Proposition 19) is the graph of a surjective, Spin(d − 1, 1)-equivariant Lie algebra
homomorphism

K : gs −→ gv ,
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where gs ⊆ gl(N) and gv ⊆ gl(Rd−1,1) are the projections of aut(Rd−1,1|N) ⊆ gl(N)⊕gl(Rd−1,1) onto
the summands. Here, K is equivariant with respect to the adjoint action of Spin(d− 1, 1) restricted
to gs and gv.

In particular the kernel of K is the internal automorphism algebra (Definition 1), also known as
the R-symmetry algebra (Example 2):

ker(K) ≃ int(Rd−1,1|N) .

Proof. We will consider the corresponding inclusion at the level of groups

Aut(Rd−1,1|N) →֒ GL(N)×GL(Rd−1,1)

with projections Gs ⊆ GL(N) and Gv ⊆ GL(Rd−1,1). The result will then follow by differentiation.
Note that the spinor-to-vector pairing

[−,−] : N ⊗N → Rd−1,1

is surjective, because it is a nonzero map of Spin(d− 1, 1)-representations, and Rd−1,1 is irreducible
for dimension d ≥ 3. Hence for every vector v ∈ Rd−1,1, there is a pair of spinors ψ, φ ∈ N such that

v = [ψ, φ].

It follows that for any automorphism (f, g) ∈ Aut(Rd−1,1|N) ⊆ Gs × Gv, g is uniquely determined
by f because (f, g) is an automorphism:

g(v) = [f(ψ), f(φ)] .

This determines a function k : Gs → Gv sending f to g. It is surjective by construction of Gv, and
is a group homomorphism because its graph Aut(Rd−1,1|N) is a group. Finally, conjugating (f, g)
by an element of Spin(d− 1, 1), it is a quick calculation to check that k is Spin(d− 1, 1)-equivariant,
using the equivariance of the spinor-to-vector pairing [−,−].

Lemma 4. Let gs be as in Lemma 3. Then aut(Rd−1,1|N) ≃ gs as Lie algebras.

Proof. Because aut(Rd−1,1|N ) is the graph of the homomorphism K : gs → gv from Lemma 3, it is
isomorphic to the domain of this homomorphism, gs.

Lemma 5. Let N be a real spinor representation of Spin(d− 1, 1) in some dimension d ≥ 3. Then
the Lie algebra gv from Lemma 3 decomposes as a Spin(d− 1, 1)-representation into the direct sum
of the adjoint representation with the trivial representation:

gv ≃ so(d− 1, 1)⊕ R.

Similarly, the Lie algebra gs from Lemma 3 decomposes as a direct sum of exterior powers of the
vector representation Rd−1,1:

gs ≃ ⊕
i
ΛniRd−1,1 .

Proof. First assume that N is a Majorana spinor representation as in Example 25, and consider gs.
Since the Majorana representation N is a real subrepresentation of a complex Dirac representation
CdimR(N) there is a canonical R-linear inclusion

EndR(N) →֒ EndC(C
dimR(N)) .

Therefore it is sufficient to note that the space of endomorphisms of the Dirac representation over
the complex numbers decomposes into a direct sum of exterior powers of the vector representation.
This is indeed so, thanks to the inclusion:

EndC(C
dimR(N)) →֒ Cl(Rd−1,1)⊗ C .
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Explicitly, in terms of the Dirac Clifford basis of Example 25, the decomposition is given by the
usual component formula:

ψ ⊗ φ 7→ φψ +
(
φΓaψ

)
Γa + 1

2

(
φΓabψ

)
Γab + 1

3!

(
φΓa1a2a3ψ

)
Γa1a2a3 + · · · .

Now consider gv. Recall that, by definition, the automorphism group of Rd−1,1|N is

Aut(Rd−1,1|N) :=
{
(f, g) ∈ GL(N)×GL(Rd−1,1) : [f(ψ), f(φ)] = g[ψ, φ] for ψ, φ ∈ N

}

and its Lie algebra is

aut(Rd−1,1|N) =
{
(X,Y ) ∈ gl(N)⊕ gl(Rd−1,1) : [Xψ, φ] + [ψ,Xφ] = Y [ψ, φ] for ψ, φ ∈ N

}
.

As we noted above, Aut(Rd−1,1|N ) always contains Spin(d − 1, 1)), acting canonically, since the
spinor-to-vector pairing is Spin(d − 1, 1)-equivariant. Another subgroup of automorphisms that
exists generally is a copy of the multiplicative group of real numbers R× where t ∈ R× acts on
spinors ψ as rescaling by t and on vectors v as rescaling by t2:

ψ 7→ tψ, v 7→ t2v.

The Lie algebra of this scaling action is the scaling derivations of Example 20. Hence for all d and
N we have the obvious Lie algebra inclusion

so(d− 1, 1)⊕ R →֒ aut(Rd−1,1|N) .

This shows that there is an inclusion

so(d− 1, 1)⊕ R →֒ gv →֒ gl(Rd) .

Hence it now only remains to see that there is no further summand in gv. But we know that there
is at most one further summand in gl(Rd−1,1), since this decomposes in the form

gl(Rd−1,1) ≃ so(d− 1, 1)⊕ R⊕ Sym2
0(R

d−1,1),

where Sym2
0(R

d−1,1) denotes the space of traceless, symmetric d×d matrices. It follows that the only
further summand that could appear in gv is Sym2

0(R
d−1,1). But by Lemma 3, the homomorphism

K : gs → gv is surjective, so its image gv must be a subset of the exterior powers appearing in
gs. Since the symmetric traceless matrices and the exterior powers Λ•Rd are distinct irreducible
representations of Spin(d− 1, 1), we conclude Sym2

0(R
d−1,1) is not a summand of gv.

This concludes the proof for the case that N is a Majorana representation. The argument for
N symplectic Majorana (Ex. 25) is similar. Finally, a general real spin representation is a direct
multiple of N or a sum of multiples of the two Weyl representations N ≃ N− ⊕N+. We generalize
to these cases in turn.

First, we consider nN , a direct multiple of N , for n some nonnegative integer. Since EndR(nN) ≃
n2EndR(N), the left hand side is indeed a sum of exterior powers.

Next, if N decomposes as N− ⊕N+, a general spin representation is of the form n−N− ⊕n+N+,
for n− and n+ nonnegative integers. We wish to show that

EndR(n−N−⊕n+N+) ≃ n2
−EndR(N−)⊕n−n+HomR(N−, N+)⊕n+n−HomR(N+, N−)⊕n2

+EndR(N+)

is a sum of exterior powers. Yet we have already shown that

EndR(N− ⊕N+) ≃ EndR(N−) ⊕ HomR(N−, N+) ⊕ HomR(N+, N−) ⊕ EndR(N+)

is a sum of exterior powers. Thus, every summand on the right hand side is a sum of exterior powers,
and it follows that EndR(n−N− ⊕ n+N+) is also.
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Proposition 6. For any dimension d ≥ 3 and real spinor representation N of Spin(d − 1, 1), the
super-Minkowski super Lie algebra Rd−1,1|N (Definition 22) is admissible (Definition 1). Moreover,
the Lie algebra of external automorphisms (Definition 1) of Rd−1,1|N is the direct sum:

ext(Rd−1,1|N) ≃ so(d− 1, 1)⊕ R,

where so(d − 1, 1) acts in the canonical way on Rd−1,1|N (Definition 22) and R acts by the scaling
action from Example 20.

Proof. The admissibility of Rd−1,1|N will follow when we determine ext(Rd−1,1|N ) has the form
claimed, since this form is reductive, and the action of ext(Rd−1,1|N) on Rd−1,1|N described in
the proposition gives the splitting. So we prove this form is correct. By Lemma 4, we have
aut(Rd−1,1|N) ≃ gs and by Lemma 5 we have a decomposition as Spin(d− 1, 1)-representations

aut(Rd−1,1|N ) ≃ (so(d− 1, 1) ⊕ R) ⊕ ker(K)︸ ︷︷ ︸
=int(Rd−1,1|N )

,

where the last summand is the algebra of internal automorphisms (Definition 1), hence the R-
symmetries (Example 2). Therefore the claim follows by Definition 1.

3 The maximal invariant central extensions of the superpoint

With the results from the previous section in hand, we have a way of talking about the so(d− 1, 1)
symmetries of a super-Minkowski super Lie algebra Rd−1,1|N purely in terms of its Lie bracket :
it is the algebra of simple external automorphisms of Rd−1,1|N , by Proposition 6. This allows
us to begin with a super Lie algebra that lacks any apparent relation to spacetime, and discover
spacetime symmetries via the automorphisms. We make repeated use of this in our construction of
super-Minkowski spacetimes by central extension of the superpoint, R0|1. This is our main result,
Theorem 14.

To be precise, we compute consecutive ‘maximal invariant central extensions’ of the superpoint.
First we state the definition of the extension process:

Definition 7 (maximal invariant central extensions). Let g be an admissible super Lie algebra
(Definitions 1 and 15), let h →֒ aut(g) be a subalgebra of its automorphism Lie algebra (Proposition
19) and let

V �

� // ĝ

��
g

be a central extension of g by a vector space V in even degree. Then we say that ĝ is

1. an h-invariant central extension if the even 2-cocycles that classify the extension, according to
Example 17, are h-invariant 2-cocycles as in Definition 21;

2. an invariant central extension if it is h-invariant and h = extsimp(g) is the semi-simple part of
its external automorphism Lie algebra (Definition 1);

3. a maximal h-invariant central extension if it is an h-invariant central extension such that the
n-tuple of h-invariant even 2-cocycles that classifies it (according to Example 17) is a linear
basis for the even h-invariant cohomology H2

even(g,R)
h (Definition 21).
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When the central extension ĝ is both maximal and invariant, we say it is a maximal invariant central
extension and distinguish it with the symbol ⋆ on the projection map ĝ → g, like this:

V �

� // ĝ

⋆

��
g

We now begin to climb the tower of maximal invariant central extensions, beginning with the
superpoint. But first we must note that our starting point is admissible.

Lemma 8. The superpoint R0|N (Def. 24) is admissible (Def. 1) for any natural number N ∈ N.

Proof. All automorphisms of R0|N are internal (Def. 1), so the external automorphisms are trivial.
Hence, they are trivially reductive, and trivially a subalgebra of aut(R0|N ), which is what it means
to be admissible.

In our next proposition, we see spacetime appear by extending a superpoint.

Proposition 9. The maximal invariant central extension (Definition 7) of the superpoint R0|2 (Def.
24) is the 3-dimensional super Minkowski super Lie algebra R2,1|2 as in Definition 22:

R3 �
� // R2,1|2

⋆

��
R0|2

with N = 2 the unique irreducible real spinor representation of Spin(2, 1) from Proposition 32.

Proof. Since R0|2 is concentrated in odd degree, the external automorphisms are trivial: ext(R0|2) =
0. Thus, every central extension is invariant (Def. 7).

According to Example 17, the maximal central extension is the one induced by the all of the
even super Lie algebra 2-cocycles on R0|2. Since R0|2 is concentrated in odd degree and has trivial
Lie bracket, an even 2-cocycle in this case is given by a symmetric bilinear form on R2. There
is a 3-dimensional real vector space of these. This shows that the underlying super vector space
of the maximal central extension is R3|2. It remains to check that the Lie bracket is that of 3d
super-Minkowski.

If we let {dθ1, dθ2} denote the canonical basis of the dual space R0|2∗, then the space of even
2-cocycles is spanned by:

dθ1 ∧ dθ1 dθ1 ∧ dθ2

dθ2 ∧ dθ2 ,

where the wedge product is symmetric between these odd elements. By the formula for the central

extension from Example 17, this means that the super Lie bracket is given on the spinors ψ =


 ψ1

ψ2




and φ =


 φ1

φ2


 by

[ψ, φ] =




ψ1φ1
1
2 (ψ1φ2 + φ1ψ2)

1
2 (ψ1φ2 + φ1ψ2) ψ2φ2


 = 1

2

(
ψφ† + ψφ†

)
,

13



Comparing this formula to Proposition 32, we see this is indeed the spinor-to-vector pairing for the
real representation 2 of Spin(2, 1).

To deduce the maximal invariant central extensions of R2,1|2, we use the representation of spinors
via the normed division algebras as a key tool. We give all the details in Proposition 32 of our
appendix, but for the reader’s convenience, we quickly summarize the idea.

There are four real normed division algebras: the real numbers R, the complex numbers C, the
quaternions H, and the octonions O. They have dimensions 1, 2, 4 and 8, respectively. It is a famous
fact that the octonions O are not associative, while R,C and H are. For K a normed division algebra
of dimension k, we can construct spinors for spacetime of dimension k + 2. More precisely, we can
cook up two irreducible, real spinor representations of the spin group Spin(k+1, 1), the double cover
of the connected Lorentz group SO0(k + 1, 1). Both of these spinor representations are defined on
the vector space K2, but they differ in the action of Spin(k + 1, 1):

N+ = K2, N− = K2.

We can also define Minkowski spacetime itself in terms of K, as the space of 2×2 hermitian matrices
over K:

Rk+1,1 :=

{[
t+ x y
y t− x

]
: t, x ∈ R, y ∈ K

}

where y ∈ K is denotes the conjugate of y ∈ K. For the more details, see Proposition 32.
Our next lemma relates the construction of spinors from K and from the ‘Cayley–Dickson double’,

Kdbl (Def. 26). Roughly, the Cayley–Dickson double takes a normed division algebra K of dimension
k, and gives the ‘next’ normed division algebra Kdbl of dimension 2k:

Rdbl = C, Cdbl = H, Hdbl = O.

This process breaks down for K = O, when Odbl fails to be a division algebra.
In any case, the Cayley–Dickson double contains the original algebra as a subalgebra, K ⊆

Kdbl. This means that the 2 × 2 hermitian matrices over K are a subset of those over Kdbl, and
hence there is an inclusion of spacetimes Rk+1,1 ⊆ R2k+1,1, and a corresponding inclusion of spin
groups Spin(k + 1, 1) ⊆ Spin(2k + 1, 1). By restricting along this inclusion, spinor representations
of Spin(2k+1, 1) become representations of Spin(k+1, 1). The next lemma tells us precisely which
representations we obtain in this way.

Lemma 10. Let K ∈ {R,C,H} be an associative normed division algebra (Example 27) of dimension
k, and let Kdbl ∈ {C,H,O} be its Cayley–Dickson double (Definition 26) of dimension 2k. Let N+

and N− be the real spinor representations defined in terms of K, and let Ndbl denote either of the
real spinor representations defined in terms of Kdbl, as in Proposition 32. Consider the inclusion
of spin groups Spin(k + 1, 1) ⊆ Spin(2k + 1, 1) induced by the inclusion of normed division algebras
K ⊆ Kdbl. Restricting along this inclusion, the irreducible real Spin(2k + 1, 1)-representation Ndbl

branches into the direct sum of the two irreducible real Spin(k + 1, 1)-representations N+, N−:

Ndbl ≃ N+ ⊕N− .

Proof. We will prove the result for Ndbl+, as the argument for Ndbl− will be similar. By Proposition
32, the spin representation Ndbl+ is defined on the real vector space K2

dbl. By Cayley–Dickson
doubling (Definition 26), this is given in terms of K as the direct sum

K2
dbl ≃ K2 ⊕K2ℓ .

This makes it immediate that the first summand K2 is N+ as a representation of Spin(k+1, 1). We
need to show that the second summand is isomorphic to N−.
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To that end observe, by the relations in the Cayley–Dickson construction (Definition 26), that
for ψ ∈ K2 and A ∈ h2(K) a 2× 2 hermitian matrix, we have the following identity:

A(ψℓ) = A(ℓψ)

= ℓ(Aψ)

= ℓ(ALψ)

= ℓ(ARψ)

= (ARψ)ℓ ,

where AL and AR denotes the right and left actions of the matrix A, respectively (Def. 28), and we
have used Prop. 30 to relate left and right actions under conjugation.

Recall from Prop. 32 that Spin(k + 1, 1) is the subgroup of the Clifford algebra generated by
products of pairs of unit vectors of the same sign:

Spin(k + 1, 1) = 〈AB ∈ Cℓ(k + 1, 1) : A,B ∈ Rk+1,1, η(A,A) = η(B,B) = ±1〉.

It follows from our above calculation that the action of a generator AB ∈ Spin(k + 1, 1) on the
summand K2ℓ is the composition of right actions on K2:

ÃLBL(ψℓ) = Ã(B(ψℓ))

=
(
ÃRBR(ψ)

)
ℓ

Therefore we are now reduced to showing that this action of Spin(k + 1, 1) on K2:

ψ 7→ ÃRBR(ψ) for ψ ∈ K2

is isomorphic to the action of Spin(k + 1, 1) on N−, which also has the underlying vector space K2:

ψ 7→ ALB̃L(ψ) for ψ ∈ K2 .

We claim there is an isomorphism given by

F : ψ 7→ Jψ ,

where J is the matrix:

J :=

(
0 −1
1 0

)
.

A quick calculation shows that J satisfies the matrix identity:

JA = −ÃJ

for any A ∈ h2(K) a 2× 2 hermitian matrix. We use this to show that F is indeed an isomorphism:

F (ÃRBR(ψ)) = J ÃRBR(ψ)

= J ÃLBL(ψ)

= J Ã(B ψ)

= A(B̃Jψ)

= ALB̃L(F (ψ))
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Next, for our spinor representation N± constructed from a normed division algebra, we need to
know certain invariants of the spin group action.

Lemma 11. Let K ∈ {R,C,H,O} be a normed division algebra (Example 27) of dimension k, and
let N± be the real Spin(k + 1, 1) spinor representations from Proposition 32. Then

1. (End(N±))
Spin

≃

{
K if K ∈ {R,C,H}
R if K = O

2.
(
Sym2(N±)

)Spin
≃ 0

where the superscript Spin denotes the subspace left invariant by Spin(k + 1, 1).

Proof. For part 1, the algebra of Spin(k + 1, 1)-equivariant real linear endomorphisms of N±:

EndSpin(k+1,1)(N±) = (End(N±))
Spin

is called the commutant of N±. For an irreducible representation such as N±, Schur’s lemma tells
us the commutant must be an associative division algebra. By the Frobenius theorem, the only
associative real division algebras are R,C and H. We must now determine which case occurs, but
this is done by Varadarajan [52, Theorem 6.4.2].

For part 2, recall from Proposition 32 that we have an invariant pairing

〈−,−〉 : N+ ⊗N− → R.

Thus N± ≃ N∗
∓, and in particular, Sym2N± ≃ Sym2N∗

∓. But the latter is the space of symmetric
pairings:

Sym2N∓ → R,

which is a subspace of the space of all pairings on N∓. The invariant elements of the space of all
pairings are tabulated according to dimension and signature mod 8 by Varadarajan [52, Theorem
6.5.10]. In particular, for K = R,C where N∓ = K2 are the spinors in signature (2, 1) and (3, 1)

respectively, the nonzero invariant pairings are antisymmetric, so
(
Sym2(N±)

)Spin
= 0. For K =

H,O, where N∓ = K2 is the space of spinors in signature (5, 1) and (9, 1) respectively, N∓ is not

self-dual, so there are no nonzero invariant pairings, and again we conclude
(
Sym2(N±)

)Spin
= 0.

Combining the previous two lemmas, we can prove a surprising relationship between the Cayley–
Dickson double and maximal invariant central extension: they are in essence the same! More
precisely, the maximal invariant central extension of Rk+1,1|N+⊕N− , constructed from the normed
division algebra K, is given by R2k+1,1|Ndbl , constructed from the Cayley–Dickson double Kdbl.

Proposition 12. Let K ∈ {R,C,H} be an associative normed division algebra (Example 27) of
dimension k, and let Kdbl ∈ {C,H,O} be its Cayley–Dickson double (Definition 26) of dimension
2k. Then the maximal invariant central extension of Rk+1,1|N+⊕N− , with N± the irreducible real
spinor representations constructed from K as in Proposition 32, is R2k+1,1|Ndbl :

K
�

� // R2k+1,1|Ndbl

⋆

��
Rk+1,1|N+⊕N− ,

for Ndbl either of the irreducible real spinor representations induced by the Cayley–Dickson double
Kdbl.
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Proof. By Proposition 6, we need to compute the even so(k+1, 1)-invariant cohomology ofRk+1,1|N+⊕N−

in degree 2. Such even Lorentz invariant 2-cocycles need to pair two spinors in N+ ⊕ N−: there is
no even pairing between spinors in N+ ⊕N− and vectors in Rk+1,1, and no antisymmetric Lorentz
invariant pairing between vectors in Rk+1,1. Due to the simple nature of the Lie bracket on super-
Minkowski spacetime, this means that we need to compute the space of so(k + 1, 1)-invariant sym-
metric bilinear forms on N+ ⊕N−, because every symmetric bilinear form on N+ ⊕N− is an even
2-cocycle.

We now apply Lemma 10 to produce these Lorentz-invariant 2-cocycles. Namely, let v ∈ R2k+1,1

be any vector in the orthogonal complement of Rk+1,1. Then the symmetric pairing

Ndbl ⊗Ndbl → R

ψ ⊗ φ 7→ η(v, [ψ, φ])

is clearly Spin(k + 1, 1)-invariant, by the equivariance of the spinor pairing (Proposition 32) and
the assumption on v. But by Lemma 10, Ndbl is N+ ⊕ N− as a Spin(k + 1, 1)-representation.
Therefore this construction yields a k-dimensional space of Spin-invariant symmetric bilinear pairings
on N+ ⊕N−. Moreover, by the definition of the pairing above, it follows that the central extension
classified by these pairings, regarded as 2-cocycles, is R2k+1,1|Ndbl .

To conclude the proof, it remains to show this invariant extension is maximal, hence that the
dimension of the space of all invariant symmetric pairings on N+ ⊕ N− is k. The space of all
symmetric pairings, invariant or not, is:

Sym2(N+ ⊕N−) ≃ Sym2(N+) ⊕ N+ ⊗N− ⊕ Sym2(N−) .

So, we seek the invariant elements of the latter space. By Lemma 11, the invariant subspaces of
Sym2(N±) vanish. Therefore the space of invariant 2-cocycles is the space of invariant elements
in N+ ⊗ N−. By the spinor-to-scalar pairing from Prop. 32 the two spaces N+ and N− are dual
to each other as Spin(k + 1, 1)-representations. Therefore the invariant elements in N+ ⊗ N− are
equivalently the equivariant linear endomorphisms of N+:

N+ → N+ .

By Lemma 11 this space of invariant endomorphisms is identified with K

(End(N+))
Spin ≃ K .

Hence the dimension of this space is k, which concludes the proof.

Proposition 13. The maximal invariant central extension (Definition 7) of the type IIA super-

Minkowski spacetime R9,1|16⊕16 is R10,1|32:

R
�

� // R10,1|32

⋆
��

R9,1|16⊕16

Proof. By Proposition 6, we seek even so(9, 1)-invariant 2-cocycles. Since the extension in question
is clearly so(9, 1)-invariant, it is sufficient to show that the space of all so(9, 1)-invariant 2-cocycles

on R9,1|16+16 is 1-dimensional. As in the proof of Proposition 12, that space is equivalently the
space of so(9, 1)-invariant elements in

Sym2(N+ ⊕N−) ≃ Sym2(N+) ⊕ N+ ⊗N− ⊕ Sym2(N−) .

By Lemma 11, the invariants in Sym2(N±) vanish and the space of invariants in N+ ⊗ N− is one-
dimensional.
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Putting together our results in this section, we prove our main theorem.

Theorem 14. The process that starts with the superpoint R0|1 and then consecutively doubles
the supersymmetries and forms the maximal invariant central extension according to Definition
7 discovers the super-Minkowski super Lie algebras Rd−1,1|N from Definition 22 in dimensions
d ∈ {3, 4, 6, 10, 11} for N = 1 and N = 2 supersymmetry: there is a diagram of super Lie alge-
bras of the following form

R10,1|32

⋆
▼▼▼

▼▼▼

&&▼▼
▼▼

R9,1|16

⋆
▼▼▼

▼▼▼

&&▼▼
▼▼

R9,1|16+16//
//

R5,1|8

⋆s
sss

ss

yysss
s

R5,1|8+8//
//

R3,1|4+4 oo
oo

R3,1|4

⋆r
rr
rr

yyrrr
r

R2,1|2+2 oo
oo

R2,1|2

⋆r
rr
rr

yyrrr
r

R0|1+1 oo
oo

R0|1

where each single arrow
⋆ // denotes a maximal invariant central extension according to Defi-

nition 7 and where each double arrow denotes the two evident injections (Remark 23).

Proof. This is the joint statement of Proposition 9, Proposition 12 and Proposition 13. Here we use
in Proposition 12 that for K ∈ {R,C} a commutative division algebra, the two representations N±

from Proposition 32 are in fact isomorphic.

4 Outlook

In view of the brane bouquet [27], Theorem 14 is suggestive of phenomena still to be uncovered.
Further corners of M-theory, currently less well understood, might be found by following the process
of maximal invariant central extensions in other directions. Indeed, note that Theorem 14 only
exhibits some maximal invariant central extensions. It does not claim that there are no further
maximal central extensions.

For instance, the N = 1 superpoint R0|1 also has a maximal central extension, namely the
super-line R1|1 = R1,0|1

R1|1

⋆

��
R0|1

This follows immediately with the same argument as in Proposition 9.
The natural next question is, what is the bouquet of maximal central extensions emerging out of

R0|3? It is clear that the first step yields R6|3, with the underlying even 6-dimensional vector space
canonically identified with the 3 × 3 symmetric matrices with entries in the real numbers. Now if
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an analogue of Proposition 12 continued to hold in this case, then the further consecutive maximal
invariant extensions might involve the 3 × 3 hermitian matrices with coefficients in the complex
numbers C, the quaternions H, and finally the octonions O. The last of these, denoted h3(O) for
the 3 × 3 hermitian matrices over O, is the famous exceptional Jordan algebra. Just as h2(O), the
2× 2 hermitian matrices over O, is isomorphic to Minkowski spacetime R9,1, so h3(O) is isomorphic
to the 27-dimensional direct sum R9,1 ⊕ 16 ⊕ R consisting of 10d-spacetime, one copy of the real
10d spinors and a scalar [5, Section 3.4]. This kind of data is naturally associated with heterotic
M-theory, and grouping its spinors together with the vectors and the scalar to a 27-dimensional
bosonic space is reminiscent of the speculations about bosonic M-theory [34]. Therefore, should the
bouquet of maximal invariant extensions truly include h3(O), this might help to better understand
the nature of the bosonic or heterotic corners of M-theory.

In a similar vein, we ought to ask how the tower of steps in Theorem 14 continues beyond
dimension 11, and what the resulting structures mean.

A Background

For reference, we briefly recall some definitions and facts that we use in the main text.

A.1 Super Lie algebra cohomology

We recall the definition of super Lie algebras and their cohomology. All our vector spaces and
algebras are over R, and they are all finite dimensional. We write even for 0 ∈ Z2 and odd for
1 ∈ Z2.

Definition 15. The tensor category of super vector spaces is the category of Z2-graded vector spaces
and grade-preserving linear maps, equipped with the unique non-trivial braiding, τ super. For any
two super vector space V and W , τ super is the isomorphism

τ super : V ⊗W → W ⊗ V
v1 ⊗ v2 7→ (−1)σ1σ2 v2 ⊗ v1,

for elements v1 ∈ V , v2 ∈W of homogeneous degree σi ∈ Z2.
A super Lie algebra is a Lie algebra internal to super vector spaces. That is, it is a super vector

space
g = geven ⊕ godd

equipped with a bilinear map, called the Lie bracket :

[−,−] : g⊗ g −→ g

which is graded skew symmetric:

[v1, v2] = −(−1)σ1σ2 [v2, v1]

and which satisfies the graded Jacobi identity:

[v1, [v2, v3]] = [[v1, v2], v3] + (−1)σ1σ2 [v2, [v1, v3]] .

A homomorphism of super Lie algebras g1 −→ g2 is a linear map preserving the Z2-grading and the
bracket.

Definition 16 (super Lie algebra cohomology). Let V be a finite-dimensional super vector space.
Then the super-Grassmann algebra Λ•V ∗ is the Z× (Z2)-bigraded-commutative associative algebra
freely generated by V ∗ in degree 1 ∈ Z. That is to say it is generated by the elements in V ∗

even
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regarded as being in bidegree (1, even), and the elements in V ∗
odd regarded as being in bidegree

(1, odd), subject to the relation that for αi two elements of homogeneous bidegree (ni, σi), then

α1 ∧ α2 = (−1)n1n2(−1)σ1σ2 α2 ∧ α1 .

In particular, this relation says that elements of bidegree (1, even) anticommute with each other,
those of bidegree (1, odd) commute with each other, while an element of bidegree (1, even) anticom-
mutes with an element of bidegree (1, odd).

Now let (g, [−,−]) be a finite-dimensional super Lie algebra. Then its Chevalley–Eilenberg algebra
CE(g) is the super-Grassmann algebra Λ•g∗ equipped with the differential dCE defined as follows.
On the generators g∗, dCE acts as the linear dual of the Lie bracket:

[−,−]∗ : g∗ → Λ2g∗.

The action of dCE on generators is then extended to all of Λ•g∗ as a derivation, bigraded of bidegree
(1, even). This makes CE(g) into a differential graded algebra. A calculation shows d2CE = 0, so
CE(g) is also a cochain complex.

For p ∈ N we say that a (p + 2)-cocycle on g with coefficients in R is a dCE-closed element in
Λp+2g∗. We say that cocycle is even if its degree in Z2 is even, and odd if it is odd. The super Lie
algebra cohomology of g with coefficients in R is the cohomology of its Chevalley–Eilenberg algebra,
regarded as a cochain complex:

H•(g,R) := H•(CE(g)) .

The Z2-grading on CE(g) makes Hp(g,R) into a super vector space for each p. We will be interested
in its even part, Hp

even(g,R).

Example 17. Let g be a finite dimensional super Lie algebra, and let ω ∈ Λ2g∗ be an even 2-cocycle
as in Definition 16. Then there is a new super Lie algebra ĝ whose underlying super vector space is

ĝ := geven ⊕ R︸ ︷︷ ︸
even

⊕ godd︸︷︷︸
odd

and with super Lie bracket given by

[(x1, c1), (x2, c2)] = ([x1, x2], ω(x1, x2)) .

We thus have a short exact sequence giving ĝ as a central extension of g:

0 → R → ĝ → g → 0.

In the paper, we will often write this short exact sequence as follows, in the style an algebraic
topologist might use to write down a fibration:

R
�

� // ĝ

��
g .

Just as for ordinary Lie algebras, this construction establishes a natural equivalence between central
extensions of g by R (in even degree) and even super Lie algebra 2-cocycles on g.

More generally, a central extension in even degree is by some vector space V ≃ Rn

Rn �
� // ĝ

��
g

which is equivalently the result of extending by n even 2-cocycles, one after the other, in any order.
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We will be interested not in the full super Lie algebra cohomology, but in the invariant coho-
mology with respect to some action:

Definition 18. For g a super Lie algebra (Definition 15), its automorphism group is the Lie subgroup

Aut(g) →֒ GL(geven)×GL(godd)

of the group of degree-preserving linear isomorphisms on the underlying vector space, consisting of
those elements which are super Lie algebra isomorphisms.

Proposition 19. For g a super Lie algebra, the Lie algebra of its automorphism Lie group (Defini-
tion 18)

aut(g)

is called the the automorphism Lie algebra of g. It is the Lie algebra of those linear maps ∆: g → g

which preserve the degree and satisfy the derivation property:

∆[X,Y ] = [∆X,Y ] + [X,∆Y ]

for all X,Y ∈ g. The Lie bracket on aut(g) is the commutator:

[∆1,∆2] := ∆1∆2 −∆2∆1 .

We caution the reader that, even though g is a super Lie algebra, its automorphism algebra
aut(g) is merely a Lie algebra. This is because we want elements of aut(g) to preserve the degree on
g.

Example 20. The super-Minkowski super Lie algebras Rd−1,1|N from Definition 22 all carry an
automorphism action of the abelian Lie algebra R which is spanned by the scaling derivation that
acts on vectors v ∈ Rd−1,1 by

v 7→ 2v

and on spinors ψ ∈ N by
ψ 7→ ψ .

Definition 21. Let g be a super Lie algebra (Def. 15). Clearly, every automorphism of g will
induce an automorphism of the Chevalley–Eilenberg algebra CE(g) (Def. 16). Explicitly, this works
as follows. Let ∆ ∈ aut(g) be an infinitesimal automorphism (Prop. 19). The induced automorphism
∆CE : CE(g) → CE(g) acts on the generators g∗ of CE(g) as the linear dual ∆∗:

∆CE : g
∗ ∆∗

−→ g∗.

This is then extended to all of CE(g) as a derivation of bidegree (0, even). The fact that ∆CE

commutes with dCE is equivalent to the fact that ∆ is a derivation of g.
Now let h →֒ aut(g) be a Lie subalgebra of its automorphism Lie algebra. The elements of CE(g)

which are annihilated by ∆CE for all ∆ ∈ h form a differential graded subalgebra of CE(g):

CE(g)h →֒ CE(g)

We say an h-invariant (p+ 2)-cocycle on g is an element in CE(g)h which is dCE-closed and the
h-invariant cohomology of g with coefficients in R is the cochain cohomology of this subcomplex:

H•(g,R)h := H•(CE(g)h) .

We define even and odd invariant cocycles as before. The vector space Hp(g,R)h is Z2-graded for
each p, and our focus will be on its even part, Hp

even(g,R)
h.
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A.2 Super-Minkowski spacetimes

We recall the definition of ‘super-Minkowski super Lie algebras’ (Definition 22) as well as their
construction, on the one hand via Majorana or symplectic Majorana spinors (Example 25), and on
the other hand via the four normed division algebras (Proposition 32). We freely use basic facts
about spinors, as may be found in the book of Lawson and Michelsohn [40].

Definition 22 (super-Minkowski Lie algebras). Let d ∈ N (spacetime dimension) and let N be a real
spinor representation of Spin(d−1, 1), the double cover of the connected Lorentz group SO0(d−1, 1).
Then d-dimensional N -supersymmetric super-Minkowski spacetime Rd−1,1|N is the super Lie algebra
(Definition 15) whose underlying super-vector space is

Rd−1,1|N := Rd−1,1
︸ ︷︷ ︸
even

⊕ N︸︷︷︸
odd

.

The Lie bracket is nonzero only onN , and is a choice of symmetric, bilinear, Spin(d−1, 1)-equivariant
map:

[−,−] : N ⊗N −→ Rd−1,1.

Such a map is always available in spacetime signature (d−1, 1) [30], though there may be more than
one choice [52].

There is a canonical action of Spin(d− 1, 1) on Rd−1,1|N by Lie algebra automorphisms, and the
corresponding semidirect product Lie algebra is the super Poincaré super Lie algebra

iso(Rd−1,1|N) = Rd−1,1|N ⋊ so(d− 1, 1) .

It is also called the supersymmetry algebra.

Remark 23 (number of super-symmetries). In the physics literature the choice of real spinor rep-
resentation in Definition 22 is often referred to as the ‘number of supersymmetries’. While this is
imprecise, it fits well with the convention of labelling irreducible representations by their dimension
in boldface. For example when d = 10 there are two irreduible real spinor representations, both of
real dimension 16, but of opposite chirality, and hence traditionally denoted 16 and 16. Hence we
may speak of N = 16 supersymmetry (also called N = 1, type I or heterotic) and N = 16 ⊕ 16

supersymmetry (also called N = (1, 1) or type IIA) and N = 16 ⊕ 16 supersymmetry (also called
N = (2, 0) or type IIB).

In Section 3 the generalization of the last of these cases plays a central role, where for any
given real spin representation N we pass to the doubled supersymmetry N ⊕ N . Observe that
the two canonical linear injections N → N ⊕ N into the direct sum induce two super Lie algebra
homomorphisms

Rd−1,1|N //
//
Rd−1,1|N⊕N .

The following degenerate variation of super-Minkowski spacetime will play a key role:

Definition 24 (superpoint). A superpoint is the super Lie algebra

R0|N

which has zero Lie bracket, and whose underlying super vector space is concentrated in odd degree,
where it is of dimension N .

We will use two different ways of constructing real spin representations, and hence super-
Minkowski spacetimes: via ‘Majorana’ or ‘symplectic Majorana’ spinors (Example 25) and via real
normed division algebras (Proposition 32).
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Example 25 (Majorana representations). For d = 2ν or 2ν+1, there exists a complex representation
of the Clifford algebra Cl(Rd−1,1)⊗ C, hence of the spin group Spin(d− 1, 1) on C2ν such that

1. all skew-symmetrized products of p ≥ 1 Clifford elements Γa1···ap
are traceless;

2. Γ†
0 = Γ0 and Γ†

i = −Γi, for 1 ≤ i ≤ d− 1.

This is the Dirac representation, a complex representation of Spin(d − 1, 1). For d = 2ν this is the
direct sum of two subrepresentations on C2ν−1, the Weyl representations.

For d ∈ {1, 2, 3, 4, 8, 9, 10, 11}, there exists a real structure J on the complex Dirac representation,
restricting to the Weyl representations for d = 2 or d = 10. This is a Spin(d − 1, 1)-equivariant
antilinear endomorphism J : S → S which squares to the identity: J2 = +1. It carves out a real
representation called the Majorana representation N := Eig(J,+1), the eigenspace of J of eigenvalue
+1, whose elements are called the Majorana spinors. In this case the Dirac conjugation ψ 7→ ψ†Γ0

on elements ψ ∈ C2ν restricts to N and is called the Majorana conjugation. We write it as simply
ψ 7→ ψ. In terms of this matrix representation then the spinor bilinear pairing that appears in
Definition 22 is given by the following matrix product expression:

[ψ, φ] =
(
ψΓaφ

)d−1

a=0
.

Similarly, for d ∈ {5, 6, 7} there exists a quaternionic structure on the Dirac representation.
This is a Spin(d− 1, 1)-equivariant antilinear endomorphism J̃ which squares to minus the identity,
J̃2 = −1. It follows that

J :=

(
0 −J̃

J̃ 0

)

is a real structure on the direct sum of the Dirac representation with itself. Hence as before N :=
Eig(J,+1) is a real subrepresentation, called the symplectic Majorana representation. The spinor-
to-vector bilinear pairing for symplectic Majorana spinors is similar to the case of Majorana spinors.

Definition 26 (Cayley–Dickson double [5, Section 2.2]). Let K be a real ∗-algebra. This is a real,
not necessarily associative algebra K equipped with a conjugation (−) : K → K, satisfying:

a+ b = a+ b, ab = b a, a = a,

for any a, b ∈ K. Then the Cayley–Dickson double Kdbl of K is the real ∗-algebra obtained from
K by adjoining one element ℓ such that ℓ2 = −1 and such that the following relations hold, for all
a, b ∈ K:

a(ℓb) = ℓ(ab) , (aℓ)b = (ab)ℓ , (ℓa)(bℓ) = − (ab) .

Finally, the conjugation (−) on Kdbl acts on elements of K by the conjugation on K, and sends the
new generator ℓ to −ℓ.

Example 27. Consider R the real numbers regarded as a ∗-algebra with trivial conjugation a = a.
Then its Cayley–Dickson double (Definition 26) is the complex numbers C with the usual conjuga-
tion, the Cayley–Dickson double of C is the quaternions H, and the Cayley–Dickson double of H is
the octonions O.

By a classical result of Hurwitz, these four algebras are the only normed division algebras over
the real numbers, as reviewed by Baez [5].

In the next proposition and elsewhere in the text, we will use n× n matrices over K to describe
real linear operators on Kn. We will write K[n] for the set of all n × n matrices with entries in K.
For any such matrix, there are two natural ways for it to induce a linear operator, one using left
multiplication in K and the other right multiplication.

23



Definition 28. (Matrices over K as linear operators) Let K be a normed division algebra. Any
element of a ∈ K induces a linear endomorphism on K by left or right multiplication, which we will
denote by aL or aR, respectively:

aL : K → K

x 7→ ax
,

aR : K → K

x 7→ xa.

More generally, any n × n matrix A ∈ K[n] induces a linear endomorphism on Kn via either left
multiplication or right multiplication:

AL : K
n → Kn

x 7→
∑
aijxj

,
AR : Kn → Kn

x 7→
∑
xjaij

where we are using the subscript xj to denote the jth coordinate of x ∈ Kn, and A = (aij). In other
words, AL and AR are the linear maps on Kn with components ((aij)L) and ((aij)R), respectively.
We say that AL is the left action of A and AR is the right action of A. We caution that because K is
nonassociative, (AB)L 6= ALBL in general, and because K is nonassociative and noncommutative,
(AB)R 6= ARBR in general.

Remark 29. The left action of a matrix A by AL is just the usual matrix multiplication, so we will
sometimes write:

ALx = Ax.

The utility of defining the linear transformation AL is that the composition of linear transformations
is associative, so we do not need to worry about the nonassociativity of K when we compose them.
For example:

ALBLCLx = A(B(Cx)).

Since K comes with a conjugation, we can define the conjugate of any matrix in K[n] by taking
the conjugate of each entry, and the conjugate of any element of Kn by taking the conjugate of each
coordinate. It is then an elementary calculation to show that the action of a matrix A by AL and
AR are related by conjugation:

Proposition 30. Let A ∈ K[n] be an n× n matrix over the normed division algebra K (as defined
in Example 27). Then

ALx = (A)R x and ARx = (A)L x

for all x ∈ Kn.

The next definition is straightforward, but is central to realizing spin representations via normed
division algebras.

Definition 31 ([49]). For A ∈ h2(K) a hermitian matrix with coefficients in one of the four real
normed division algebras from Example 27. Then its trace reversal is

Ã := A− tr(A) · 1 .

Proposition 32 ([7]). Let K ∈ {R,C,H,O} be one of the normed division algebras as in Example
27. Write h2(K) for the real vector space of 2 × 2 hermitian matrices with coefficients in K, and k
for the dimension of K.

Then:

1. There is an isomorphism of inner product spaces (“forming Pauli matrices over K”)

(Rk+1,1, η)
≃
−→ (h2(K),−det)

identifying Rk+1,1 equipped with its Minkowski inner product

η(A,B) := −A0B0 +A1B1 + · · ·+Ak+1Bk+1, for A,B ∈ Rk+1,1

with the space of hermitian matrices equipped with the negative of the determinant operation.
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2. Let N+ and N− both denote the vector space K2. Then N+ ⊕N− is a module of the Clifford
algebra Cℓ(k + 1, 1), with the action of a vector in A ∈ Rk+1,1 given by

Γ(A)(ψ, φ) = (ÃLφ,ALψ)

for any element (ψ, φ) ∈ N+ ⊕N−, where we are using the identification of vectors with 2× 2

hermitian matrices. Here (̃−) is the trace reversal operation from Def. 31, and (−)L denotes
the linear map given by left multiplication as in Def. 28

3. Realizing the spin group Spin(k + 1, 1) inside the Clifford algebra Cℓ(k + 1, 1) by the standard
construction, this induces irreducible representations ρ± of Spin(k + 1, 1) on N±. Explicitly,
recall that Spin(k + 1, 1) is the subgroup of the Clifford algebra generated by products of pairs
of unit vectors of the same sign:

Spin(k + 1, 1) = 〈AB ∈ Cℓ(k + 1, 1) : A,B ∈ Rk+1,1, η(A,A) = η(B,B) = ±1〉.

Then restricting the Clifford action to these elements, a generator AB of Spin(k + 1, 1) acts
as

ρ+(AB) = ÃLBL on N+

and as
ρ−(AB) = ALB̃L on N−,

where again (̃−) is the trace reversal operation from Def. 31, and where (−)L denotes the
linear map given by left multiplication as in Def. 28.

For K ∈ {R,C} then these two representations are in fact isomorphic and are the Majorana
representation of Spin(2, 1) and Spin(3, 1), respectively, while for K ∈ {H,O} they are the
two non-isomorphic symplectic-Majorana representations of Spin(5, 1) and Majorana–Weyl
representations of Spin(9, 1), respectively.

4. Under the above identifications, the symmetric bilinear Spin(k + 1, 1)-equivariant spinor-to-
vector pairings are given by

[−,−] : N+ ⊗N+ → Rk+1,1

ψ ⊗ φ 7→ 1
2

(
˜ψφ† + φψ†

)

and
[−,−] : N− ⊗N− → Rk+1,1

ψ ⊗ φ 7→ 1
2

(
ψφ† + φψ†

)

5. There is a bilinear symmetric, non-degenerate and Spin(k + 1, 1)-invariant spinor-to-scalar
pairing given by

〈−,−〉 : N± ⊗N∓ → R

ψ ⊗ φ 7→ Re(ψ†φ) .
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