93 research outputs found
Mental Stress Provokes Ischemia in Coronary Artery Disease Subjects Without Exercise- or Adenosine-Induced Ischemia
ObjectivesThe purpose of this study was to investigate the possibility that some patients with coronary artery disease (CAD) but negative exercise or chemical stress test results might have mental stress-induced ischemia. The study population consisted solely of those with negative test results.BackgroundMental stress-induced ischemia has been reported in 20% to 70% of CAD subjects with exercise-induced ischemia. Because mechanisms of exercise and mental stress-induced ischemia may differ, we studied whether mental stress would produce ischemia in a proportion of subjects with CAD who have no inducible ischemia with exercise or pharmacologic tests.MethodsTwenty-one subjects (14 men, 7 women) with a mean age of 67 years and with a documented history of CAD were studied. All subjects had a recent negative nuclear stress test result (exercise or chemical). Subjects completed a speaking task involving role playing a difficult interpersonal situation. A total of 30 mCi 99mTc-sestamibi was injected at one minute into the speech, and imaging was started 40 min later. A resting image obtained within one week was compared with the stress image. Images were analyzed for number and severity of perfusion defects. The summed difference score based on the difference between summed stress and rest scores was calculated. Severity was assessed using a semiquantitative scoring method from zero to four.ResultsSix of 21 (29%) subjects demonstrated reversible ischemia (summed difference score ≥3) with mental stress. No subject had chest pain or electrocardiographic changes during the stressor. Mean systolic and diastolic blood pressure and heart rate all increased between resting and times of peak stress.ConclusionsMental stress may produce ischemia in some subjects with CAD and negative exercise or chemical nuclear stress test results
Prophylactic and therapeutic activity of fully human monoclonal antibodies directed against Influenza A M2 protein
Influenza virus infection is a prevalent disease in humans. Antibodies against hemagglutinin have been shown to prevent infection and hence hemagglutinin is the major constituent of current vaccines. Antibodies directed against the highly conserved extracellular domain of M2 have also been shown to mediate protection against Influenza A infection in various animal models. Active vaccination is generally considered the best approach to combat viral diseases. However, passive immunization is an attractive alternative, particularly in acutely exposed or immune compromized individuals, young children and the elderly. We recently described a novel method for the rapid isolation of natural human antibodies by mammalian cell display. Here we used this approach to isolate human monoclonal antibodies directed against the highly conserved extracellular domain of the Influenza A M2 protein. The identified antibodies bound M2 peptide with high affinities, recognized native cell-surface expressed M2 and protected mice from a lethal influenza virus challenge. Moreover, therapeutic treatment up to 2 days after infection was effective, suggesting that M2-specific monoclonals have a great potential as immunotherapeutic agents against Influenza infection
Prolyl hydroxylase 2 inactivation enhances glycogen storage and promotes excessive neutrophilic responses.
Fully activated innate immune cells are required for effective responses to infection, but their prompt deactivation and removal are essential for limiting tissue damage. Here, we have identified a critical role for the prolyl hydroxylase enzyme Phd2 in maintaining the balance between appropriate, predominantly neutrophil-mediated pathogen clearance and resolution of the innate immune response. We demonstrate that myeloid-specific loss of Phd2 resulted in an exaggerated inflammatory response to Streptococcus pneumonia, with increases in neutrophil motility, functional capacity, and survival. These enhanced neutrophil responses were dependent upon increases in glycolytic flux and glycogen stores. Systemic administration of a HIF-prolyl hydroxylase inhibitor replicated the Phd2-deficient phenotype of delayed inflammation resolution. Together, these data identify Phd2 as the dominant HIF-hydroxylase in neutrophils under normoxic conditions and link intrinsic regulation of glycolysis and glycogen stores to the resolution of neutrophil-mediated inflammatory responses. These results demonstrate the therapeutic potential of targeting metabolic pathways in the treatment of inflammatory disease.This work was principally supported by a Wellcome Trust Senior Clinical Fellowship award (098516 to SRW), Medical Research Council (MRC) Clinical Training Fellowship awards (G0802255 to AART; MR/K023845/1 to RSD), an Academy of Medical Sciences (AMS) starter grant (to AART), a Wellcome Trust Senior Clinical Fellowship award (076945 to DHD), British Lung Foundation Fellowship (F05/7 to HMM), and a Engineering and Physical Sciences Research Council and Medical Research Council grant (EP/L016559/1, JAW). The MRC /University of Edinburgh Centre for Inflammation Research is supported by an MRC Centre Grant. The work of PC is supported by long-term structural funding-Methusalem funding from the Flemish Government. CJS thanks the Wellcome Trust and Cancer Research UK for support
Severe Plasmodium falciparum Malaria Is Associated with Circulating Ultra-Large von Willebrand Multimers and ADAMTS13 Inhibition
Plasmodium falciparum infection results in adhesion of infected erythrocytes to blood vessel endothelium, and acute endothelial cell activation, together with sequestration of platelets and leucocytes. We have previously shown that patients with severe infection or fulminant cerebral malaria have significantly increased circulatory levels of the adhesive glycoprotein von Willebrand factor (VWF) and its propeptide, both of which are indices of endothelial cell activation. In this prospective study of patients from Ghana with severe (n = 20) and cerebral (n = 13) P. falciparum malaria, we demonstrate that increased plasma VWF antigen (VWF∶Ag) level is associated with disproportionately increased VWF function. VWF collagen binding (VWF∶CB) was significantly increased in patients with cerebral malaria and severe malaria (medians 7.6 and 7.0 IU/ml versus 1.9 IU/ml; p<0.005). This increased VWF∶CB correlated with the presence of abnormal ultra-large VWF multimers in patient rather than control plasmas. Concomitant with the increase in VWF∶Ag and VWF∶CB was a significant persistent reduction in the activity of the VWF-specific cleaving protease ADAMTS13 (∼55% of normal; p<0.005). Mixing studies were performed using P. falciparum patient plasma and normal pooled plasma, in the presence or absence of exogenous recombinant ADAMTS13. These studies demonstrated that in malarial plasma, ADAMTS13 function was persistently inhibited in a time-dependent manner. Furthermore, this inhibitory effect was not associated with the presence of known inhibitors of ADAMTS13 enzymatic function (interleukin-6, free haemoglobin, factor VIII or thrombospondin-1). These novel findings suggest that severe P. falciparum infection is associated with acute endothelial cell activation, abnormal circulating ULVWF multimers, and a significant reduction in plasma ADAMTS13 function which is mediated at least in part by an unidentified inhibitor
Hepatitis C Virus Infection May Lead to Slower Emergence of P. falciparum in Blood
International audienceBACKGROUND: Areas endemic for Plasmodium falciparum, hepatitis B virus (HBV) and hepatitis C virus (HCV) overlap in many parts of sub-Saharan Africa. HBV and HCV infections develop in the liver, where takes place the first development stage of P. falciparum before its further spread in blood. The complex mechanisms involved in the development of hepatitis may potentially influence the development of the liver stage of malaria parasites. Understanding the molecular mechanisms of these interactions could provide new pathophysiological insights for treatment strategies in Malaria. METHODOLOGY: We studied a cohort of 319 individuals living in a village where the three infections are prevalent. The patients were initially given a curative antimalarial treatment and were then monitored for the emergence of asexual P. falciparum forms in blood, fortnightly for one year, by microscopy and polymerase chain reaction. PRINCIPAL FINDINGS: At inclusion, 65 (20.4%) subjects had detectable malaria parasites in blood, 36 (11.3%) were HBV chronic carriers, and 61 (18.9%) were HCV chronic carriers. During follow-up, asexual P. falciparum forms were detected in the blood of 203 patients. The median time to P. falciparum emergence in blood was respectively 140 and 120 days in HBV- and HBV+ individuals, and 135 and 224 days in HCV- and HCV+ individuals. HCV carriage was associated with delayed emergence of asexual P. falciparum forms in blood relative to patients without HCV infection. CONCLUSIONS: This pilot study represents first tentative evidence of a potential epidemiological interaction between HBV, HCV and P. falciparum infections. Age is an important confounding factor in this setting however multivariate analysis points to an interaction between P. falciparum and HCV at the hepatic level with a slower emergence of P. falciparum in HCV chronic carriers. More in depth analysis are necessary to unravel the basis of hepatic interactions between these two pathogens, which could help in identifying new therapeutic approaches against malaria
Assessing road effects on bats: the role of landscape, road features, and bat activity on road-kills
Recent studies suggest that roads can significantly impact bat populations. Though bats are one of the most threatened groups of European vertebrates, studies aiming to quantify bat mortality and determine the main factors driving it remain scarce. Between March 16 and October 31 of 2009, we surveyed road-killed bats daily along a 51-km-long transect that incorporates different types of roads in southern Portugal. We found 154 road-killed bats of 11 species. The two most common species in the study area, Pipistrellus kuhlii and P. pygmaeus, were also the most commonly identified road-kill, representing 72 % of the total specimens collected.
About two-thirds of the total mortality occurred between mid July and late September, peaking in the second half
of August. We also recorded casualties of threatened and rare species, including Miniopterus schreibersii, Rhinolophus
ferrumequinum, R. hipposideros, Barbastella barbastellus, and Nyctalus leisleri. These species were found mostly in early autumn, corresponding to the mating and swarming periods. Landscape features were the most
important variable subset for explaining bat casualties.
Road stretches crossing or in the vicinity of high-quality habitats for bats—including dense Mediterranean woodland (‘‘montado’’) areas, water courses with riparian gallery, and water reservoirs—yielded a significantly
higher number of casualties. Additionally, more roadkilled bats were recorded on high-traffic road stretches with viaducts, in areas of higher bat activity and near
known roosts
Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors
Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe
- …