14,688 research outputs found

    Operational benefits from the terminal configured vehicle

    Get PDF
    The NASA Terminal Configured Vehicle is a flying laboratory used to conduct research and development on improved airborne systems (including avionics) and operational flight procedures, with particular emphasis on utilization in the terminal area environment. The objectives of this technology development activity, focused on conventional transport aircraft, are to develop and demonstrate improvements which can lead to increased airport and runway capacity, increased air traffic controller productivity, energy efficient terminal area operations, reduced weather minima with safety, and reduced community noise by use of appropriate procedures. This paper discusses some early results of this activity in addition to defining present efforts and future research plans

    Advances in Computer Reconstruction of Acoustical Holography

    Get PDF
    The article describes the results of two methods: the Fresnel approximation and the convolution method used for the exact Rayleigh-Sommerfeld equation. Curves for the Fresnel approximation are shown as a function of flaw depth and number of sample points. Despite a violation of the fresnel condition, an image can be achieved without visible phase distortion. This and its limits are shown on synthetic and experimental data. By shifting the hologram and not changing the symmetric phase factor, calculation time is saved because the rearrangement in the image space is achieved automatically. The exact method angular spectrum has been simplified in three steps. For different insonification angles in shear wave holography, the data set must be multiplied by an aperture function before being Fourier transformed. Examples demonstrate the usefulness of contact technique probes. To improve the recording time, a 140 element array will be multiplexed electronically and moved mechanically

    Numerical electrokinetics

    Full text link
    A new lattice method is presented in order to efficiently solve the electrokinetic equations, which describe the structure and dynamics of the charge cloud and the flow field surrounding a single charged colloidal sphere, or a fixed array of such objects. We focus on calculating the electrophoretic mobility in the limit of small driving field, and systematically linearise the equations with respect to the latter. This gives rise to several subproblems, each of which is solved by a specialised numerical algorithm. For the total problem we combine these solvers in an iterative procedure. Applying this method, we study the effect of the screening mechanism (salt screening vs. counterion screening) on the electrophoretic mobility, and find a weak non-trivial dependence, as expected from scaling theory. Furthermore, we find that the orientation of the charge cloud (i. e. its dipole moment) depends on the value of the colloid charge, as a result of a competition between electrostatic and hydrodynamic effects.Comment: accepted for publication in Journal of Physics Condensed Matter (proceedings of the 2012 CODEF conference

    Charge Fluctuation Forces Between Stiff Polyelectrolytes in Salt Solution: Pairwise Summability Re-examined

    Full text link
    We formulate low-frequency charge-fluctuation forces between charged cylinders - parallel or skewed - in salt solution: forces from dipolar van der Waals fluctuations and those from the correlated monopolar fluctuations of mobile ions. At high salt concentrations forces are exponentially screened. In low-salt solutions dipolar energies go as R5R^{-5} or R4R^{-4}; monopolar energies vary as R1R^{-1} or lnR\ln{R}, where RR is the minimal separation between cylinders. However, pairwise summability of rod-rod forces is easily violated in low-salt conditions. Perhaps the most important result is not the derivation of pair potentials but rather the demonstration that some of these expressions may not be used for the very problems that originally motivated their derivation.Comment: 8 pages and 1 fig in ps forma

    New Results from NA49

    Get PDF
    We present recent results of the SPS experiment NA49 on production of strange particles and event-by-event fluctuations of mean ptp_t and of charged particle ratios in central Pb+Pb collisions at various beam energies (40, 80, 158 AGeV) as well as in different collisions at 158 AGeV, going from p+p over light-ion collisions to peripheral and central Pb+Pb.Comment: 5 pages, 6 figures (in eps) talk given at XXXI International Symposium on Multiparticle Dynamics, Sep. 1-7, 2001, Datong China URL http://ismd31.ccnu.edu.cn

    Final Report: Buffalo National River Ecosystems

    Get PDF
    The objective of this study was to sample the Buffalo River on a seasonal basis for a year, in order to determine whether any potential water quality problems existed

    Phase Separation in Charge-Stabilized Colloidal Suspensions: Influence of Nonlinear Screening

    Full text link
    The phase behavior of charge-stabilized colloidal suspensions is modeled by a combination of response theory for electrostatic interparticle interactions and variational theory for free energies. Integrating out degrees of freedom of the microions (counterions, salt ions), the macroion-microion mixture is mapped onto a one-component system governed by effective macroion interactions. Linear response of microions to the electrostatic potential of the macroions results in a screened-Coulomb (Yukawa) effective pair potential and a one-body volume energy, while nonlinear response modifies the effective interactions [A. R. Denton, \PR E {\bf 70}, 031404 (2004)]. The volume energy and effective pair potential are taken as input to a variational free energy, based on thermodynamic perturbation theory. For both linear and first-order nonlinear effective interactions, a coexistence analysis applied to aqueous suspensions of highly charged macroions and monovalent microions yields bulk separation of macroion-rich and macroion-poor phases below a critical salt concentration, in qualitative agreement with predictions of related linearized theories [R. van Roij, M. Dijkstra, and J.-P. Hansen, \PR E {\bf 59}, 2010 (1999); P. B. Warren, \JCP {\bf 112}, 4683 (2000)]. It is concluded that nonlinear screening can modify phase behavior but does not necessarily suppress bulk phase separation of deionized suspensions.Comment: 14 pages of text + 9 figure

    Hydrodynamic fluctuations in the Kolmogorov flow: Linear regime

    Full text link
    The Landau-Lifshitz fluctuating hydrodynamics is used to study the statistical properties of the linearized Kolmogorov flow. The relative simplicity of this flow allows a detailed analysis of the fluctuation spectrum from near equilibrium regime up to the vicinity of the first convective instability threshold. It is shown that in the long time limit the flow behaves as an incompressible fluid, regardless of the value of the Reynolds number. This is not the case for the short time behavior where the incompressibility assumption leads in general to a wrong form of the static correlation functions, except near the instability threshold. The theoretical predictions are confirmed by numerical simulations of the full nonlinear fluctuating hydrodynamic equations.Comment: 20 pages, 4 figure
    corecore