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ABSTRACT 

The NASA Terminal Configured Vehicle i s  a f l y i n g  laboratory used t o  
conduct research and devel opnent on improved a i  rborne systems ( i n c l  udi ng 
avionics) and operational f l i g h t  procedures, wi th par t icu lar  emphasis on 
u t i l i z a t i o n  i n  the terminal area environment. The objectives o f  t h i s  
technology development ac t i v i t y ,  focused on conventional transport a i r -  
craf t ,  are t o  develop and demonstrate improvements which can lead t o  
increased a i rpor t  and runway capacity , increased a i r  t r a f f i c  control l e r  
productivity, energy e f f i c i e n t  terminal area operations, reduced weather 
minima wi th safety, and reduced comnunity noise by use o f  appropriate 
procedures. This paper discusses some ear ly resu l ts  o f  t h i s  a c t i v i t y  i n  
addit ion t o  defining present e f f o r t s  and future research plans. 



INTROWCTION 

The NASA Terminal configured Vehicle (TCV) Program i s  an advanced 
technology a c t i v i t y  focused on improved operations o f  Conventional 
Takeoff and Landing (CTOL) a i r c r a f t  i n  high density terminal areas wi th  
reduced weather minima. The purpose of the program i s  t o  address the 
improvement o f  airborne equipment and procedures i n  fu ture  high density 
terminal areas, considering advanced f l i g h t  systems (pr imar i ly  controls 
and displays) coupled wi th  improved navigation, comnunication, and 
landing guidance. Part o f  t h i s  program i s  t o  assess the impact and 
interact ion o f  these improvements wi th  the a i r  t r a f f i c  system. The TCV 
Program i s  managed by the NASA Langley Research Center, and i n  cooperation 
wi th DOT/FAA and other NASA centers, i s  developing technology for advanced 
airborne systsms and f 1 i gh t  procedures t o  improve terminal area operations 
i n  the fu ture  ATC enviroment. 

The urgency f o r  improvement i n  terminal area operations i s  i 1 lustrated 
by the a i r  f l e e t  growth projections shown i n  f igure 1 from (ref .  1). 
One o f  the major constraints on capacity i s  the delay and congestion i n  
the terminal area, and t h i s  s i tuat ion w i l l  only worsen i f  the f l e e t  
growth occurs as shown i n  the figure. An actual data po in t  i s  shown on 
the chart which indicates a larger f l e e t  than predicted i n  the 1970 
forecast. Conservative estimates indicate a doubling o f  the a i r  f l e e t  
by 1995. 

Withington o f  Boeing ( re f .  2) estimates tha t  a 5% reduction in  
delay (or f l i g h t  time) i s  equivalent, i n  terms o f  d i r ec t  operating costs 
(DOC), t o  a 5% reduction i n  drag. Figure 2 i l l u s t r a tes  t h i s  point, w i th  
an approximate 3.5% change i n  DOC associated wi th  drag and a 3.2% change 
i n  DOC associated wi th f l i g h t  time reduction. 

Considering the cost o f  delays, l e t  us examine the lower par t  of 
f igure 3, which i s  discussed i n  more de ta i l  i n  ( re f .  3).  The schedule 
time o f  an a i r l i n e  f l i g h t  o f  average stage length i s  shown, including 
the various components (shaded) that  add t o  the time required f o r  a 
d i rec t  f l i g h t  wi th no delays. A1 though the passenger i s  not aware o f  
any delays, the average delays due t o  non-direct rout ing (current airway 
routes vs d i rec t  routes), holding and path stretching t o  obtain a i r c r a f t  
separation, non-optimum a1 t i tudes, weather delays, etc., are included i n  
the a i r l i n e  scheduled f l i g h t  times. I n  t h i s  par t icu lar  case, 25% o f  the 
time i s  b u i l t - i n  f o r  delays. It i s  estimated tha t  a 20% reduction i n  
scheduled time for a Boeing 727 o f  the stage length i l l u s t r a t e d  could be 
real ized through improvement i n  airspace u t i l i z a t i o n  o f  the type the TCV 
Program i s  investigating. This equates t o  approximately a 13% reduction 
i n  DOC. A more disturbing i 1 lus t ra t ion  o f  deter iorat ing airspace usage 
i s  presented i n  the upper part  o f  f igure 3 where a current j e t  time 



schedule i s  compared wi th an ea r l i e r  turboprop f l i g h t  time. The schedule 
time f o r  the je t ,  which always follows Instrument F l i gh t  Rules (IFR) and 
procedures, i s 42% greater than the slower Lockheed Electra using a 
d i rec t  routing under Visual F l i gh t  Rules (VFR). An object ive of the TCV 
Program i s  t o  improve future systems to  approach the VFR-type of operation 
i n  Instrument Meteorological Conditions (IMC) . 

A more alarming trend i s  shown i n  f fgure 4. This shows as a 
function of time the number o f  major a i r  ca r r ie r  a i rpo r ts  i n  the United 
States that  have reached o r  w i l l  reach pract ica l  capacity (15 minutes 
peak-hour delay) i n  IMC i f  nothing i s  done t o  improve the a i r  t r a f f i c  
system. Note tha t  i n  1974 nine a i rpor ts  had already reached pract ica l  
capacity. The number o f  such a i rpor ts  i s  forecast t o  increase rap id ly  
u n t i l  about 1984, and then increase a t  a lesser rate, reaching 24 such 
a i rpor ts  by the year 2000. If th i s  i s  allowed t o  happen, the growth of 
a i r  transportation w i l l  become seriously inhib i ted.  Major improvements 
w i l l  require extensive research and development and a long lead time t o  
implement. 

This lead time i n  the past has been considerable. To emphasize 
t h i s  point, l e t  us examine i n  deta i l  f igure 5. It can be read i ly  seen 
that  i t  has been almost 50 years since Doo l i t t l e  made h i s  b l i nd  landing, 
and 34 ears since the f i r s t  successful automatic landing i n  a transport r a i rcra f  . Today, CAT I11 operations (approaching zero v i s i b i  1 i t y )  carrying 
fare-paying passengers, has barely begun i n  t h i s  country while CAT I1 i s  
not yet  implemented f l e e t  wide. Figure 5, overlayed by f igure 4 shows 
that  on a calendar time basis the MLS development and implementation i s  
l a t e  wi th regard t o  overcoming IMC capacity l imi tat ions.  Also, the 
development o f  new airborne equipment and procedures t o  take f u l l  advantage 
of the MLS, as well as other planned new airspace systems, may well  lag 
behind the airspace systems development. It w i l l  be a miracle if such 
advanced ground and airborne systems are functioning operational l y  on a 
broad basis before 20 years have elapsed, unless an intensive and continuing 
e f f o r t  i s  made toward necessary improvements. 

The NASA Langley Research Center, i n  cooperation wi th  the FAA, i s  
pursuing research and technology development f o r  airborne systems and 
procedures that  can provide needed improvements f o r  the anticipated a i r  
t r a f f i c  problems. The concept of t h i s  program, the Terminal Configured 
Vehicle (TCV) Program, i s  i l l u s t r a ted  i n  f igure 6. The fu ture  terminal 
i s  envisioned as one i n  which a r r i va ls  may be scheduled t o  outer f ixes 
from which metering and spacing to  the runway i s  accompl ished i n  terms 
o f  time. 



This paper discusses the TCV Program, inc luding the  TCV a i r c r a f t  
f a c i  1 i t y  , and the operational benef i ts  measured by research experiments 
as we1 1 as demonstrations o f  the U.S. Time Reference Scanning Beam 
Microwave Landing System (TRSB MLS) . Other research a c t i v i  t ies ,  present 
and future, are a lso  discussed. 

THE TCV PROGRAM 

It i s  recognized tha t  t o  take advantage o f  new a i r  t r a f f i c  systems 
t o  solve the problems they are intended t o  solve, a s im i la r  advance i n  
the airborne systems and f l i g h t  procedure capab i l i t y  must be achieved. 
The airborne system i s  considered t o  be the basic a irframe and equipment, 
the fl ight-contro l  systems (automatic and p i l o t e d  modes), the displays 
for  p i l o t  monitoring o r  control, and the crew as manager and operator o f  
the system. Because o f  the urgent need t o  develop the required airborne 
system capabi l i ty ,  the NASA Langley Research Center has implemented a 
long-term research e f f o r t  known as the Terminal Configured Vehicle 
Program, f i r s t  described i n  ( re f .  4). The TCV Program purpose i s  t o  
i d e n t i f y  a i r c r a f t  system and f l i g h t  management technology t h a t  w i l l  
benef i t  terminal area operations o f  conventional a i r c r a f t .  The major 
research object ives t o  achieve t h i s  goal are: 

(1 ) Improve Terminal Area Capaci ty and Ef f i c iency  

a. Systems and procedures for  ATC evolut ion 
b. Systems and procedures for runway capacity 
c. P ro f i l es  and procedures for  fuel conservation 

(2 )  Improve Approach and Landing Capabil i ty i n  Adverse Weather 

a. Human fac tor  elements f o r  e f f e c t i v e  f l i g h t  management 
b. Systems and information t o  minimize wind-shear hazard 
c. Airborne sensors f o r  weather penetrat ion 

(3) Reduce Noise Impact through Operat i ,~g Procedures (P ro f i l es  and 
Configurations f o r  Noise Reduction) 

I n  order t o  accomplish the Program object ives and goal, a balanced 
f l i g h t  system i s  required w i th  research a c t i v i t i e s  being conducted i n  
automatic controls, displays, and airframe character is t ics.  Displays 
and contro ls  are considered essential  f o r  f u l l  pa r t i c ipa t i on  o f  the 
p i l o t  i n  the navigation and control  o f  the a i r c r a f t  i n  the terminal 
environment. Automatic contro l  i s  considered as augmenting the p i l o t i n g  
functions i n  the execution o f  safe and e f f i c i e n t  f l i g h t .  



TEMINAL AREA IMPROVEMENTS 

Operational goals o f  the TCV Program are i l l u s t r a t e d  i n  f i gu re  6. A 
microwave landing system providing precision navigation signals through- 
out a large volume o f  a i r s ~ c e  i s  considered an important element of the 
advanced airspace system. As seen i n  t h i s  figure, operations i n  the MLS 
environment can, w i th  proper controls, displays, and airframe character- 
i s t i cs ,  enable more e f fec t ive  airspace u t i l i za t i on .  This can lead t o  
a l lev ia t ion  o f  noise over heavily-populated areas, and t o  a reduction i n  
f l i g h t  time and fuel consumption. Also, on-board precision navigation 
and guidance systems, wi th  displays, w i l l  a1 low 2-dimensional (2-D) , 3- 
dimensional (3-D) , and $-dimensional (4-D, which includes time) naviga- 
t i o n  for closer sequencing and la te ra l  runway spacing f o r  simul taneous 
instrument approaches. Final ly ,  programed turnof fs a t  r e l a t i v e l y  high 
speeds are required t o  c lear the runway t o  al low operations t o  proceed 
wi th perhaps 40 t o  45 seconds between a i r c r a f t  , assuming a1 lev ia t ion  of 
vortex wake problems and great ly reduced touchdown dispersions. Research 
on displays and controls i s  underway wi th the in ten t  o f  achieving more 
ef f i c ien t  operations i n  lower v i s i b i l  i t y  conditions wi th  suf f ic ient  
confidence tha t  they become routine. 

The prin~ary f a c i l i t y  used i n  the f l i g h t  research i s  a h ighly modified 
Boeing 737 a i rc ra f t  ( f igure 7 )  equipped wi th  a l l - d i g i t a l  , integrated 
navigation, guidance, control, and display systems which can be read i ly  
reprogramned f o r  research purposes. A simp1 i f  ied block diagram o f  the 
f l i g h t  control system that  now exists i s  i l l u s t r a ted  i n  f igure 8. 

THE TCV B-737 AIRCRAFT 

A cut-away view o f  the a i r c ra f t ,  shown i n  f igure 9, i l l u s t r a t e s  the 
pal let ized ins ta l la t ion  o f  the avionics, and depicts a second cockpit 
fo r  research ( a f t  f l i g h t  deck, AFD). Research i s  enhanced by several 
notable design features: 

(1) The system functions are control lable and variable through 
software. 

(2 )  The hardware i s  easi ly  removed, modified, reparied, and ins ta l  led. 

( 3 )  F l igh t  stat ion changes are read i ly  accomplished i n  the research 
cockpit, which has a fly-by-wire inplementation f o r  control of 
the a i r c ra f t .  



The arrangement o f  the AFD i s  shown i n  the photograph o f  f igure 10. 
The center area o f  the cockpit  i s  seen t o  resemble a conventional 8-737 
cockpit, whereas the area immediately i n  f ron t  o f  the p i l o t  and co-pi lot  
have been opened up by removing the wheel and column and replacing them 
w i th  "brol l y  handle" control lers. These "brol l y  handles" a1 low control 
o f  the a i r c r a f t  from the AFD through e i ther  one o f  the two "fly-by-wire" 
control wheel steering (CWS) modes. The open area between the "b ro l l y  
handles" has been u t i l i z e d  f o r  locat ing advanced electronic displays. 

The displays i l l u s t r a ted  i n  f igure 10 consist o f  an eiectronic 
a t t i t ude  d i rec tor  indicator  (EADI) a t  the top, the electronic horizontal 

\. s i tuat ion i n r c a t o r  (EHSI) i n  the middle and the navigation control 
display u n i t  (NCDU) a t  the bottom, one set  f o r  each p i l o t .  A control 
mode select panel i s  shown located a t  the top o f  the instrument panel 
and centered between the two p i lo ts .  This panel allows select ion o f  CWS 
control modes, o r  2-D, 3-D, o r  4-D automatic f l i g h t .  The NCDU i s  used 
t o  enter preplanned routes and prof i les, t o  c a l l  up route and f l i g h t  
pro f i le  information f o r  review and/or f o r  entering new o r  revised informa- 
t ion. Also, f l i g h t  progress information can be cal led up on the NCDU 
f o r  review. 

The EADI instrument provides basic a t t i t ude  and ver t i ca l  path 
information t o  control the ai rcraf t .  The EADI symbology i s  explained i n  
f igure 11. The EHSI, i l l u s t r a ted  i n  f igure 12, i s  a p i c t o r i a l  navigation 
display t o  provide the p i l o t  wi th accurate a i r c r a f t  s i tuat ion information 
re la t i ve  t o  the guidance path desired (e i ther  INS or  MLS RNAV derived), 
f l i g h t  plan waypoints, and geographic points o f  in terest  such as a i r f i e l ds ,  
mountains, and VORTAC's. The dotted track select l i n e  i s  a tentat ive 
new track and becomes sol i d  when acquired i n  manual f l i g h t  o r  accepted 
through the NCDU f o r  automatic f l i g h t .  I n  the i l l u s t r a t i o n  the desired 
horizontal f l i g h t  path i s  displayed as a so l id  l i n e  connecting wayp~ints.  
The curved trend vector shown emanating from the nose o f  the a i r c ra f t  
symbol consists o f  3 dashes indicat ing future posi t ion a t  30, 60, and 90 
second intervals. Only a 30-second trend vector i s  displayed wi th  the 1 
n. m i .  scale. A rectangular box, j us t  beyond the waypoint SOUND, 
indicates the scheduled along-path posi t ion during 4-D operations, w i th  
the dots ahead o f  i t  indicat ing future scheduled posit ions a t  30, 60, 
and 90 sec~nds. The time box location i n  f igure 12 provides the p i l o t  
wi th an indicat ion o f  h i s  scheduled time and f l i g h t  path posi t ion errors. 

Magnetic track i s  indicated a t  the top o f  the EHSI.  The operating 
modes o f  the two EHSI  Is  ( p i l o t  and f i r s t  o f f i ce r )  are independent; i .e., 
one may be operated i n  the north-up mode ( f o r  route v isual izat ion) and 
the other i n  track-up (preferred for navigation); they may also be 
operated wi th d i f fe ren t  map scales or  options. The s ix  map scales 
provided are 1, 2, 4, 8, 16, and 32 n. mi./inch, and the one selected i s  



displayed i n  the lower l e f t  corner o f  the EHSI. The a l t i t udehange  
symbol, an opt ion when i n  the  track-up mode, consists o f  an arc some 
distance ahead of the  a i r c r a f t  symbol which represents where the  a i r c r a f t  
would reach the reference a1 t i tude,  selected v i a  the contro l  mode se lec t  
panel, i f  the current f l i g h t  path angle i s  maintained. I n  the  lower 
r i g h t  corner of the EHSI a re  displayed the ground speed (GS) i n  knots, 
the mode o f  navigat ion ( i n  t h i s  case i n e r t i a l  w i t h  s ing le  DME update, 
IDX), and the wind d i rec t i on  and veloc i ty .  When i n  the MLS RNAV mode 
the l e t t e r s  AMX ( f o r  a i r  data, MLS update) would appear i n  the lower 
r i g h t  corner. 

Complete fl i g h t  from takeof f  through landing can be accompl i shed 
from the AFD. 

U. S. MICROWAVE LANDING SYSTEM 

I n  A p r i l  1978 the Internat ional  C i v i l  Aviat ion Organization (ICAO) 
All-Weather Operations D iv is ion  i s  scheduled t o  vote f o r  select ion of a 
new in ternat iona l  standard approach and 1 andi ng guidance system t h a t  
w i l l  replace both the current instrument landing system (ILS) a t  c i v i l  
a i rpo r t s  and the ground contro l  l ed  approach (GCA) a t  m i l i t a r y  a i rpor ts .  
An A1 1 -Weather Operations Panel selected by the ICAO A1 1 -Weather Operations 
D iv is ion  evaluated candidate microwa\ 2 landing systems (MLS) submitted 
by Austral ia,  the United Kingdom, France, West Germany and the United 
States. This panel recommended f o r  in ternat ional  adoption the U . S. Time 
Reference Scanning Beam (TRSB) MLS. A l l  candidate systems operate a t  
microwave frequencies and are designed t o  serve the needs o f  a1 1 a i r c r a f t  
f o r  operations i n  a1 1 -weather conditions. 

The U.S. candidate TRSB MLS bas ica l ly  transmits three time-reference 
scanning fan-shaped rad io  beams from the runway, as i l l u s t r a t e d  i n  
f i gu re  13. The azimuth beam scans from side t o  side o f  the runway 
center +60 degrees o r  +40 degrees, depending on configuration, a t  a r a t e  
o f  134 times per second t o  provide azimuth (Az) referencing. The second 
beam scans up t o  20 degrees iind down t o  a reference plane p a r a l l e l  t o  
the runway surface a t  a r a t e  o f  40 times per second t o  provide basic 
g l i de  path guidance (EL1 ).  The t h i r d  beam, which scans up 7% degrees and 
down t o  the same plane pa ra l l e l  t o  the runway a t  a r a t e  o f  40 times per 
second, i s  used f o r  f l a r e  guidance (EL2). A four th  nonscanning fan- 
shaped beam transmitted from a distance measuring equipment (DME) s i t e  
provides ranging information. This DM€ beam i s  transmitted a t  a r a t e  of 
40 times per second and has an angular coverage o f  120 degrees i n  azimuth 
and 20 degrees i n  elevation. Time reference means tha t  receiv ing equipment 
on board the a i r c r a f t  w i l l  measure the time di f ference between successive 



" to" and "fro" sweeps o f  the scanning beams t o  determine a i r c r a f t  pos i t i on  
r e l a t i v e  t o  the runway center1 i n e  and t o  a preselected g l i d e  path. This  
t ime d i f ference measurement technique gives r i s e  t o  designat ion o f  the 
U.S. MLS as a Time Reference Scanning Beam MLS. 

NASA SUPPORT OF FAA I N  MLS TEST/DEMONSTRATIONS 

Ear ly  i n  the TCV Program, a j o i n t  NASA/FAA agreement recognized the 
long-term object ives o f  the NASA Program, and NASA agreed t o  provide use 
o f  the TCV a i r c r a f t  f o r  support o f  spec i f i c  FAA system evaluations, 
inc luding t h a t  o f  the MLS. I n  J u l y  1975, a t  the request o f  the FAA, 
NASA agreed t o  p a r t i c i p a t e  i n  a f l i g h t  test/demonstration o f  the  U.S. 
TRSB MLS capab i l i t i es  t o  the A l l  Weather Operations Panel (AWOP) o f  ICAO 
a t  the FAA's National Aviat ion F a c i l i t i e s  Experimental Center (NAFEC) i n  
May 1976. The ground ru les  adopted f o r  the demonstration were: 

(1) F l y  3-0 automatic curved, descending approaches using the 
o r i g i n a l l y  implemented navigat ion contro l  laws f o r  the curved- 
path por t ions and using MLS guidance instead o f  i n e r t i a l  
platform ( I N S )  guidance when w i t h i n  the MLS coverage. 

(2) Make t r a n s i t i o n  from curved-path por t ions t o  short ,  s t r a i g h t  
f i n a l  approaches and land w i t h  the o r i g i n a l  autoland laws 
modif ied t o  use MLS guidance subst i tu ted f o r  INS  and I L S  

uid2nce. (This impl ies de l i ve ry  by the area navigat ion 
P R w v  ) system {using MLSI i n t o  a narrow wings-level window 
a l ined w i t h  the f i n a l  s t r a i g h t - i n  course t o  permi t  "capture" 
by the autoland system. ) 

( 3 )  Perform f lares using EL2 and/or rad io  a1 t imeter  signals. 

(4)  Perform r o l l  out using MLS guidance. 

(5)  Modify the e lec t ron ic  displays t o  accept MLS derived information. 
These displays include (a) hor izonta l  s i tua t ion ,  (b) curved 
trend vector, and ( c )  center l ine  and g l  i de  path deviat ions. 

A l l  the c a p a b i l i t i e s  imp1 ied  by the ground ru les  were t o  be tested 
and demonstrated i n  an automatic mode without use o f  the i n e r t i a l  smooth- 
ing technique which i s  a basic pa r t  o f  the o r i g i n a l  conf igura t ion  i n  the 
TCV a i r c r a f t .  The FAA asked tha t  no accelerat ion signals be used t o  
augment the MLS data, i f  possible. However, the FAA stated t h a t  the use 
o f  body-mounted accelerometers or  d i r e c t  measurement o f  INS accelerat ion 
signals were permissible i f  parameters o f  t h i s  type were needed f o r  the 
basic contro l  system. The FAA a lso stated t h a t  the use o f  a t t i t u d e  data 



from the INS was permissible, i n  l i e u  o f  a t t i t u d e  from add i t iona l  high- 
qua1 i t y  v e r t i c a l  and d i rec t i ona l  a t t i t u d e  reference systems, fo r  cont ro l  / 
d isp lay  purposes. The phi  losphical  approach taken by Langley Research 
Center was t o  make minimum modi f i ca t ion  i n  the e x i s t i n g  navigation, 
guidance, and cont ro l  systems and t o  der ive  a l l  necessary parameters 
from the MLS data f o r  in ter face w i t h  these systems. 

Following the NAFEC tests/demonstrations i n  May 1976, the FAA, i n  
ea r l y  September 1977, requested fu r the r  test/demonstration support of 
NASA w i t h  the TCV a i r c r a f t .  The tests/demonstrations were t o  be a t  
Buenos A i  res, Argentina, during October - November 1977; : i e ~  York' s 
Kennedy A i rpo r t  i n  November - December 1977; Montreal, Canada, i n  March - 
A p r i l  1978; and NAFEC again on a more relaxed schedule dur ing e a r l y  
sumner 1978. The l a t t e r  i s  t o  be i n  the context o f  research experiments 
w i th  the use of back azimuth and C-band f l a r e  antennas as new experiments. 

Although improvements have been made during the course of these 
tests/  demonstrations t o  the automatic mode performance, and t o  the 
long i tud ina l  contro l  and EADI d isp lay f o r  p i l o t e d  Control Wheel Steering 
(CWS) operations, the basic avionic conf igurat ion f o r  u t i l i z a t i o n  of the 
MLS signals has remained the same. A t  t h i s  time the tests/demonstrations 
a t  Buenos Aires, New York, and Montreal have been completed successfully. 

AVIONICS CONFIGURATION FOR ICAO TEST/DEMONSTRATION 

The basic conf igurat ion o f  the TCV 8-737 f l i g h t  contro l  system was 
shown i n  f i g u r e  8. The f l i g h t  c r i t i c a l  sensors and computers for  the 
autoland system are t r i p l i c a t e d  f o r  redundancy, s i m i l a r  t o  those t t  lt 
would be su i tab le  f o r  an operational system. Other components were 
intended t o  be dualized, but have not  been i n  the current  research 
system. The TRSB MLS in tegra t ion  w i t h  the TCV a i r c r a f t  f l i g h t  contro l  
system i s  i l l u s t r a t e d  I n  f i gu re  14 from ( re f .  5) .  As noted, the o r i g i n a l  
avionics system was not  configured t o  use MLS data f o r  navigation, 
guidance, o r  contro l  . 

The pr inc ipa l  task t o  which NASA addressed i t s  e f f o r t s  was the 
in tegra t ion  o f  the MLS signals i n t o  the navigation, guidance and cont ro l  
laws and d isp lay symbology o f  the o r i g i n a l  system t h a t  had been designed 
t o  use INS, DME, ILS, and rad io  a l t imeter  data. The major development 
e f f o r t s  involved w i t h  the conf igurat ion, as shown i n  f i g u r e  14, were 
d i rected a t  a i r c r a f t  antenna design and locat ion, in ter face of the MLS 
receiver w i t h  the experimental system, and design o f  the MLS guidance 
signal processor. Wherever possible, the funct ions o f  t h i s  signal proces- 
sor were designed t o  permit i n teg ra t i on  o f  MLS derived navigation, 



guidance and cont ro l  parameters w i t h  ex i s t i ng  laws o f  the  navigat ion and 
guidance computer and the f l i g h t  cont ro l  (autoland) computer wi th minimal 
modi f icat ions t o  these computers. Minor changes were made t o  the e x i s t i n g  
d isp lay formats w i t h  features added t o  i nd i ca te  v a l i d i t y  o f  MLS sfgnals 
and to  improve the perspective runway format, 

FLIGHT PROFILES SELECTED 

The f l i g h t  p ro f i les  selected f o r  the 1976 ICAO tests/demonstrations 
are shown i n  f i g u r e  15 superimposed on a photograph o f  the  NAFEC area. 
The two p r o f i l e s  shown i n  t h i s  f i g u r e  are designated as a 130-degree 
azimuth capture and an S-turn azimuth capture. Each f l i g h t  p r o f i l e  
contains a 3 n.mi. s t ra igh t  f i n a l  approach representat ive o f  many VFR 
approaches being flown a t  the present time a t  congested a i r p o r t s  near 
heav i ly  populated areas. These p ro f i l es ,  which can be used t o  provide 
a l l e v i a t i o n  o f  noise over populated areas, are a lso  i l l u s t r a t i v e  o f  the 
types o f  curved paths t h a t  have potent-ial f o r  increasing a i r p o r t  capaci ty  
i n  an advanced ATC environment. 

A more de ta i led  descr ipt ion o f  f l i g h t  events along the  demonstration 
p r o f i l e s  i s  given i n  f igures 16 and 17. As seen i n  f i g u r e  16, f o r  the 
130-degree azimuth capture, takeof f  was from runway 04 w i t h  the a i r c r a f t  
contro l  led  manually from the f r o n t  cockpit  where a cont ro l  wheel s teer ing 
(CWS) mode was selected by the AFD p i l o t .  P r i o r  t o  encountering the 
f i r s t  waypoint, the AFD p i l o t  selected a 3-D automatic RNAV mode fo r  
a i r c r a f t  contro l .  This cont ro l  mode used i n e r t i a l  l y  smoothed DME/DME 
(IDD) as the source o f  guidance information. A l t i t u d e  was maintained a t  
1220 m (4000 f t )  u n t i l  the waypoint ind icated by "Begin 3-degree "Descent" 
was reached. From t h i s  po in t  the a i r c r a f t  continued descending a t  3 
degrees u n t i l  f l a r e  was i n i t i a t e d .  A f t e r  crossing the MLS Az boundary 
and approximately 15 seconds a f t e r  crossing the EL1 boundary, the p i  l o t  
received an i nd i ca t i on  o f  v a l i d  MLS data, a t  which t ime he selected the 
MLS RNAV mode which used MLS data as the source o f  guidance information. 
This l a t t e r  event i s  noted as "MLS Enable" i n  f i g u r e  16. Just  p r i o r  t o  
enter ing the f i r a l  turn, the p i l o t  switched t o  "Land Arm" .  The a i r c r a f t  
continued t o  f l y  under the MLS RNAV mode u n t i l  both selected g l i d e  path 
and l a t e r a l  path were acquired; then the contro l  o f  the a i r c r a f t  automati- 
c a l l y  switched t o  autoland, which then cont ro l led  the a i r z r a f t  along the 
3 n.mi. f i na l  approach. A t  an a l t i t u d e  consistent w i th  the sink r a t e  
and a l t i t u d e  c r i t e r i a  o f  the f l a r e  laws i n  the f l i g h t  cont ro l  system, 
f l a r e  was i n i t i a t e d .  F lare was executed using EL2 and DME data as the 
source of v e r t i c a l  guidance information on most o f  the touchdowns. On a 
few f l i g h t s  during the demonstration, a rad io  a1:imeter was used as the 
source of v e r t i c a l  guidance information f o r  comparison pcrposes. 



I t . - #  .vents along the S-turn p r o f i l e  are very s i m i l a r  t o  the events 
t:f the 13!3,-degree azimuth capture p r o f i l e ,  as shown i n  f i g u r e  17. I t  
nray be noied t h a t  the S-turn p r o f i l e  resu l ted  i n  greater t ime per iod of 
MLS RNAV than d i d  the 130-degree p ro f  i le .  On touch-and-go approaches, 
contro! was switched from a f t  f l i g h t  deck automa'tic cont ro l  t o  f r o n t  
f l i g h t  deck manual cont ro l  f o r  the takeof f  po r t i on  o f  repeat f l i g h t s ,  
On landings t h a t  continued t o  a f u l l  stop, r o l l  out bas conducted i n  an 
automatic mode tha t  used the A t  beam f o r  runway center l ine  guidance 
information. 

FLIGHT RESULTS 

During the development, test/demonstration, and post-demonstration 
data-col lect ion f l i g h t s  i n  the NAFEC MLS environment, 208 automatic 
approaches and 205 automatic f l a r e s  were flown. These f l a r e s  were 
terminated i n  touch-and-go maneuvers and f u l l - s t o p  landings t h a t  included 
automatic r o l l  out  operations. During these f l i g h t s ,  f i n a l  approaches 
of 3 n. m i .  were achieved. Following the formal demonstration, shorter- 
f i n a l  automatical ly contro l  led  approaches o f  2 n. m i .  were f lown using 
accelerat ion data from body-mounted accelerometers instead o f  from the 
INS. No degradation i n  performance was noted. Manual l y  cont ro l  l e d  
f l i g h t s  from the AFD, conducted a f t e r  the formal demonstration, included 
41 approaches w i th  f i n a l  segments o f  3, 1.5 and 1 n. m i .  

During these f l i gh ts ,  the NhFEC phototheodol i te t rack ing system was 
employed t o  o p t i c a l l y  t rack the a i r c r a f t  during the f i n a l  approach 
phases. Posi t ion information i n  an orthogonal coordinate system w i t h  
o r i g i n  located a t  the center c f  the MLS azimuth antenna array was derived 
from t rack ing e levat ion and azimuth angles from a t  l e a s t  two, and usual ly  
three, phototheodol i t e  t rack ing towers. These data were d i g i t a l l y  
f i l t e r e d  t o  reduce the noise leve l  o f  the pos i t i on  information. The 
sample r a t e  o f  the theodol i te  data i s  10 pos i t i on  samples per second. 
The accuracy o f  pos i t i on  determined from the theodo l i te  system was 
considered t o  be about 1 m a t  3 n. mi., and about 0.3 m a t  the runway 
thres hol d . 

S t a t i s t i c a l  summary p lo t s  from ( re f .  6 )  o f  v e r t i c a l  and hor izonta l  
errors f o r  the f i n a l  approach measured by theodo l i te  system f o r  the 53 
automatic approaches performed during the 1976 formal demonstration are 
presented i n  f i g u r e  18. The errors a t  5 t o  6 km from touchdown are 
those incurred by the navigat ion system a t  the end o f  the f i n a l  t u rn  
before capture by the autoland system. The "jump" i n  the data a t  5 km 
i s  due t o  switching from radar t rack ing t o  theodo l i te  tracking. 



The mean overshoot e r ro r  on tu rn ing  onto f i n a l  was about 9 m, 
tapering down t o  about 3 m a t  1 n. mi. The mean v e r t i c a l  e r r o r  a t  1 
n. mi. was less than 1.5 m. This accuracy o f  performance was achieved , . - - -  
despite very adverse winds. The winds were strong and gusty and quar ter-  
ing from the  l e f t  rear, thus prov id ing strong crosswind and t a i l w i n d  
components t h a t  were la rger  than those considered i n  normal autoland . #- 

ce r t i f i ca t i on .  Very strong shears were a lso experienced a t  times. A 
more de ta i led  discussion o f  the f l i g h t  performance during these 1976 
f l i g h t s  i s  contained i n  ( re f ,  6). 

DISPLAY UTILIZATION I N  PRIMARILY AUTOMATIC FLIGHT 

I n  exp lo i t i ng  the MLS capab i l i t i es  i n  an RNAV and MLS environment, 
and i n  u t i l i z i n g  p r o f i l e s  such as those demonstrated b ~ f o r e  the ICAO, i t  
i s  essent ial  t ha t  the f l i g h t  crew be cont inua l ly  or iented w i t h  respect 
t o  i t s  f l i g h t  and navigat ion s i tua t ion .  Today's a i r c r a f t  f l i g h t  i ns t ru -  
mentation i s  not  considered operat ional 1y adequate, e i t h e r  f o r  monitor ing 
automatic f l i g h t  o r  f o r  ~ o r ~ t i n g e n c y  reversion t o  manual cont ro l  i n  the 
environment ant ic ipated; t ha t  i s ,  close-in, curved, descending, p rec is ion  
approach p r o f i l e s  w i t h  very low v i s i b i l i t y  and c lose prox imi ty  t o  other 
t r a f f i c  .,tnsequently, the advanced e lec t ron ic  d isp lay  system has been 
prov i the a f t  f l i g h t  deck o f  the TCV a i r c r a f t  w i t h  which t o  explore 
and ('2% . , p  t h i s  a l l - important  in te r face  o f  the p i l o t  w i t h  h i s  environ- 
men t . 

During the formal ICAO demonstrations, the a b i l i t y  t o  observe the 
pos i t ion  o f  the a i r c r a f t  a t  a l l  times and i t s  t rack ing  performance by 
means o f  the displays was as impressive as the au ; , - l a t i c  operat ion 
i t s e l f ,  as indicated i n  ( re f .  5). A f te r  takeoff ,  tne d isp lays permit ted 
the AFD p i l o t s  t o  pos i t i on  the a i r c r a f t  manually f o r  a smooth, maneuver- 
less t r a n s i t i o n  t o  3-D automatic f l i g h t  i n t o  the f i r s t  waypoint of the 
automatic p r o f i l e .  Also, during the development f l i g h t s  p r i o r  t o  the 
demonstration, numerous in te r rup t ions  i n  f l y i n g  the p r o f i l e s  were encoun- 
tered. Several diversions due t o  i n t rus ion  o f  t r a f f i c  were encountered, 
and there were many programing errors and malfunctions o f  various kinds 
tha t  led  the p i l o t  t o  take over. The displays, i n  combination w i t h  
contro l  wheel steering, resul  ted i n  e f f o r t l e s s  navigat ion during reprogram- 
ming o r  redi rected f l i g h t  and f a c i l i t a t e d  expedit ious maneuvering by the 
p i l o t s  t o  reenter the desired pattetsn5 v~ i thou t  l o s t  time o r  excessive 
airspace f o r  o r i en ta t i on  and without the need f o r  vector ing from the 
ground. The EADI symbology provided an ef fect ive means of monitor ing 



f l i g h t  progress on f i n a l  approach. I n  par t i cu la r ,  the excel l e n t  reg i s t ra -  
t i o n  o f  the computer-generated image o f  the runway w i t h  the rea l  runway 
(as shown by a superimposed TV image of the rea l  runway) establ ished 
confidence i n  the potent ia l  u t i  1  i ty  o f  computer-generated runway symbology 
f o r  monitoring landing operations. 

The impl icat ions f o r  the fu tu re  are c lea r  w i th  respect t o  automatic 
f l i g h t .  Advanced displays w i l l  have t o  be provided to: 

(1 ) Maintain crew o r ien ta t i on  

(2)  Permit manual maneuvering w i t h i n  constr i i in ts  i n  airspace, fuel 
and t ime i n  order t o  cope w i th  diversions due t o  t r a f f i c  o r  
weather, o r  loss of automatic capab i l i t y .  

( 3 )  Permit continued cont ro l led  snd accurate navigat ion when new 
clearances and/or f l i g h t  p r o f i  i es  must be defined. 

MANUALLY CONTROLLED APPROACHES 

Upon completion o f  the automatic f l i g h t s  o f  the 1976 I C A O  demonstra- 
t ion, addi t ional  f l i g h t s  were conducted t o  evaluate d isp lay effectiveness 
f o r  manually contro l led f l i g h t s  along the same p ro f i l es ,  since t h i s  i s  
considered t o  be the best way t o  evaluate d isp lay information f o r  monitor- 
ing purposes and take-over if necessary. This work i s  reported i n  ( r e f .  
7 and 8). 

The vel oc i  ty-vector contro l  node was used during the approaches. 
I n  t h i s  mode the p i l o t  cormands p i t c h  r a t e  by p u l l i n g  o r  pushing the 
panel-mounted cont ro l le rs .  When the p i l o t  perceives tha t  the desired 
f l i g h t  path angle has been reached, he releases the con t ro l l e rs  and the 
system maintains tha t  f l i g h t  path angle regardless o f  changing winds o r  
airrpeed. The p i l o t  also co~nmands r o l l  r a t e  by r o t a t i n g  the panel- 
mounted cont ro l le rs .  Whet, he a t ta ins  the desired t rack angle r e l a t i v e  t o  
the runway, he releases the cont ro l le rs  w i th  wings leve l  and tha t  track 
angle i s  maintained u n t i l  f u r the r  inputs are made, regardless o f  varying 
winds. 

F i r s t ,  i n  the evaluation of the display, con~parative performance 
tests were made beiween a baseline d isp lay for ma^, consis t ing o f  the 
E A D I  and EHSI, as shown i n  f i 5u re  19 and an integrated d isp lay format 
shown i n  f igure 20. The integvated d isp lay concept has a computer- 
generated perspective runway and r e l a t i v e  t rack information added t o  the 
EADI  symbology t o  br ing horizontal  s i t ua t i on  up i n t o  one d isp lay.  This 



improves t he  rea 1 ism o f  t he  d ~ s p l a y  format and reduces the  scanning and 
mental i n t e g r a t i o n  requ i red  i n  t he  two-d isp lay arrangement. However, 
the p i l o t s  requi red 2 o r  3 sessions us ing t h i s  d i s p l a y  i n  s imu la t i on  
before l ea rn i ng  how t o  use i t  e f f e c t i v e l y .  

The task designed f o r  the  t e s t  cons is ted o f  f l y i n g  a pa th  o f f se t  
0.1 n. mi. i n s i d e  t h e  130-degree t u r n  approach, as shown i n  f i gu re  21. 
A t  the end o f  t he  t u r n  the o f f s e t  was removed and t he  p i l o t  had then t o  
acqui re  and t r ack  al inement w i t h  the runway i n  the 3 n. mi. remaining t o  
f l a r e  height.  Three p i l o t s  took p a r t  i n  t he  t e s t .  F igure  22 shows t h e  
t r ack i ng  performance w i t h  the  basel ine format. Note t h a t  the  p i l o t s  d i d  
not ,  i n  t h i s  case, a l i n e  o r  s t a b i l i z a  the f l i g h t  pa th  adequately w i t h  
respect  t o  the runway before c ross ing  t he  threshold .  Using the  i n t eg ra ted  
d isp lay,  adequately s t a b i l i z e d  a1 i n m e n t  was achieved s t  a comfortable 
d is tance from the threshold  as shown i n  f i g u r e  23. 

Eva luat ion o f  t he  in tegra ted  d i sp l ay  format was cont inued w i t h  the  
task o f  performing t he  130-degree p r o f i l e  w i t h  f i n a l  approaches shortened 
t o  1.5 and t o  1 n. mi .  Four p i l o t s  took p a r t  i n  these t es t s .  These 
were t he  f i r s t  such approaches f lown by t he  p i l o t s .  F i g w e  24 shows 
t r a c ~ s  f o r  a 1.5 n.  mi. f i n a l  and ind ica tes  s t a b i l i z e d  al inement again 
a t  a comfortable d is tance from the  threshold .  The l a r g e  overshoot of 
about 100 m on one approach was no t  o f  concern t o  t he  p i l o t  because h i s  
s i t u a t i o n  was c l ea r  tc! him and he proceeded t o  acqu i re  runway a1 inenlent 
k i t h o u t  overshoot o r  undershoot. F igure 25, f o r  a 1 n.  mi. f i n a l ,  
i nd ica tes  t n a t  t he  p i l o t s  d i d  no t  do as w e l l  i n  s t a b i l i z i n g  al inement as 
w i t h  longer f i na l s ,  bu t  probably d i d  an sdequate j ob  f o r  s u i t a b l e  lsnd-  
ings t o  be accomplished w i t h  v i s u z l  references. 

A sumnary o f  the curved approaches, both automatic and manual, 
accomplished a t  NAFEC i n  1976 a re  shown i n  f i g u r e  26. Note t h a t  f o r  the 
130-deqree automatic approach a spread o f  paths i s  i nd i ca ted  p r i o r  t o  
en te r ing  t he  f u l l  MLS coverage. Th is  spread i s  i n d i c a t i v e  o f  t he  e r r o r s  
incurred by the  normal RNAV system ( I N S  w i t h  DME,/DME update, o r  I D D )  
before en te r i ng  the MLS coverage. When MLS guidance i s  d a b l e d  and t he  
I N S  i s  replaced by more accurate MLS guidance a t r a n s i t i o n  maneuver i s  
requ i red  t o  acqui re  the des i red MLS path. Should the f i n a l  approach be 
reduced t o  1 n. m i . ,  as ind ica ted  f o r  the niariual ap3roach data o f  f i g u r e  
26, and p a r t i c u l a r l y ,  i f  a 180-degree t u r n  from a downwind l e g  should be 
des i red (as f o r  VFR f l i g h t ) ,  the  t r a n s i t i o n  maneuver i r ' 3  MLS paths 
cou ld  i n t e r f e r e  severely w i t h  the t u r r ~ s .  Thus, i t  i s  obvious t h a t  f o r  
c l ose - i n  t u rn i ng  approaches t h a t  m i f t i t  be des i red i n  the f u t u r e  the  
lniniriium MLS azimuth coverage should be niore near11 r30  t o  5120 degrees 
than '60 degrees. The RNAV to  MLS t r a n s i  t i ~ n  maneuver i t s e l f  i s  under 
study t o  determine how best t o  perfotm such maneuvers i n  var ious s j t u a -  
t i ons .  



BUENOS AIRES TEST/DEMONSTRAT ION 

The TRSB MLS test /demonstrat ion i n  Buenos A i r es  from October 31 
through November 7, 1977, was f o r  the  attendees o f  t he  Inter-American 
T e l e c m u n i c a t i o n s  Conference of the Organ-ization o f  American States 
(OAS) as w e l l  as o the r  i n v i t e d  representat ives 3 f  the  OAS, l o c a l  Argen- 
t i n e  o f f i c i a l s  and the  press. 

The t e s t  operat ions were conducted a t  Aeroparque Jolge Newbery, a 
s i n g l e  s t r i p  downtown a i r p o r t  4 km from c i t y  cen te r )  which handles a 
h igh  volume o f  shor t  haul and comnuter t r a f f i c .  Th is  a i r p o r t  l i e s  along 
the  shore of the  R io  de l a  P la ta .  

The MLS con f i gu ra t i on  the  FAA chose f o r  the Aeroparque i n s t a l l a t i o n  
was t he  Basic Narrow (aper ture)  w i t h  +40 degrees azimuth coverage. This 
was i n s t a l l e d  on runway 13. No f l a r e  antenna (EL2) was provided. Ground 
t rack ing  data o f  the approaches have no t  been obtained. On-board recorded 
t rack ing  data have no t  y e t  been completely processed. 

The two NASA approach pa t te rns  (STAR'S) chosen f o r  t he  t e s t ,  ABE04 
and ABEOS, a re  shown i n  f i gu res  27 and 28. Both pa t te rns  began a t  an 
a l t i t u d e  o f  914 m (3000 f t )  over the r i v e r  a t  about 5 n. m i .  l a t e r a l l y  
from the  touchdown pos i t i on .  The 3-degree descent began a t  the  i n i t i a l  
waypoint. ABEO4 requ i red  a 90-degree t u rn  i n t o  a 3 kni (1.6 n. m i .  ) 
s t r a i g h t  f i n a l  and about 31i minutes t o  complete from +he i n i t i a l  waypoint, 
whereas ABE05 requi red a 60-degree t u r n  i n t o  a 2 km (1.1 n. m i .  ) f i n a l  
and 3'4 minutes t o  complete from the  i n i t i a l  waypoint. The l o g i c  f o r  the 
pa t te rns  chosen can be deducted by no t i ng  i n  f i g u r e  29 t h a t  these approaches 
a re  over the r ivet .  u n t i l  t he  end o f  the f i n a l  turn ,  thus min imiz ing no ise 
exposure t o  heav i l y  populated areas t h a t  l i e  under the  long s t r a i g h t - i n  
ILS approach. During a l l  fl i g h t s  an FAA c o n t r o l l e r  manned the tower and 
handled communication w i t h  the  TCV a i r c r a f t .  F l i g h t  per iods were scheduled 
between 11 a.m. and 5:30 p.m., f o r  t r a f f i c  reasons. General ly,  two f l i g h t s  
per day w i t h  10 observers per f l i g h t  were conducted. F ive  approaches 
were planned per f l i g h t ,  four o f  ABE04 and one o f  ABEOS, w i t h  touch-and-go 
landings between approaches. On several f l  igh ts ,  t r a f f i c  delays reduced 
the number of approaches t o  between one and three since no p r i o r i t y  was 
given the  TCV a i r c r a f t  over a i r l i n e  f l i g h t s .  

A f t e r  takeo f f  the  a i r c r a f t  was turned and f lown froni the  AFD us ing 
the v e l o c i t y  vector  con t ro l  wheel s teer ing  node and was pos i t i oned  f o r  
the f i r s t  waypoint and automatic 3-D f l i g h t  i n i t i a t e d .  The 3-degree 
descent began under auton~at ic  con t ro l  a t  the  f i r s t  waypoint. As explained 
e a r l i e r ,  the TCV a i r c r a f t  RNAV system, i n  i t s  normal mode, i s  based on 



an i n e r t i a l  system (LTN51) w i th  primary update from DME/DME (ddal DME o r  
D-DME). DME's are ra re  i n  South America. Only one ex is ted i n  the area, tha t  
a t  Ezeiza Internat ional  A i rpo r t  where the TCV a i r c r a f t  was based, some 16 
n. m i .  from Aeroparque. The update had t o  reve r t  t o  t ha t  o f  a s ing le  DM€, 
a much less accurate mode. 

The e r ro r  accumulated during the described pat tern procedures i n  t h i s  
update mode was s i g n i f i c a n t  by the time the TRSB MLS coverage was entc ?d, 
resu l t i ng  i n  f a i r l y  large o f f se ts  and vigorous maneuvers t o  acquire the 
desired STAR track. 

I f  holding was required, the e r ro rs  became s i g n i f i c a n t l y  larger ,  and 
could lead t o  an aborted autoland. With STAR ABE04 there was less than a 
mi le  under MLS guidance before the f i n a l  t u rn  en t ry  w i th  the MLS Az coverage 
provided. If the e r r o r  was t o  the east o f  the track, the o f f s e t  cor rec t ive  
maneuver t o  the r i g h t ,  because o f  prox imi ty  t o  the f i n a l  turn, tended t o  
cause the a i r c r a f t  t o  overshoot the runway alinement outside o f  capture l i m i t s ,  
followed by slow cor rec t ion  back u n t i l  capture. 

For the formal demonstrations, when holding the p a t t e r r ~  has arranged 
t o  f l y  i n t o  the MLS coverage on each c i r c u i t  t o  obta in the RNAV update. 
This technique reduced the navigat ion and o f f s e t  e r ro rs  s i g n i f i c a n t l y .  
With the ABEO5 STAR, the distance from entrance i n t o  the MLS coverage 
u n t i l  s t a r t  o f  the f i n a l  turn, was greater than ABE04 so tha t  the RNAV- 
I N S  t r a n s i t i o n  maneuver could be completed before entrance t o  trhi f i n a l  
turn. Winds during the demonstrations were 1 i g h t  t o  moderate except for  
one day w i th  about a 35 knot, 45-degree crosswind from the l e f t  a t  
ground leve l .  This wind was blowing across t a l l  trees on the approach, and 
on one approach an abrupt l e f t  wing drop o f  15 degrees about 30-45 rn (100- 
150 f t )  a l t i t u d e  followed immediately by an abrupt r i g h t  wing drop o f  15 
degrees. The automatic approach continued, nevertheless, t o  a successful 
autoland. Altogether, 56 autolands and automatic r o l l  outs were accomplished 
a t  Aeroparque. During acLual formal demonstration f l i g h t s ,  42 autolands 
plus 1 manual takeover landing were performed. The takeover resul ted 
from f a i l u r e  t o  achieve autoland capture. I n  time, d i g i t a l  contro l  laws 
w i l l  be developed fo r  use throughout the MLS coverage i n  the prec is ion 
autoland mode to  avoid t h i s  capture problem. As before, the p i l o t ' s  
displays i n  the AFD impressed the observers most, p a r t i c u l a r l y  the 
p i l o t s ,  both a i r l i n e  and m i l i t a r y .  During the developinent f l i g h t s  ar,d 
f e r r y  f l i g h t s  from Ezeiza (base airport) t o  Aeroparqire f o r  the denanstra- 
t ions, the p i l o t s  performed a few complete STAR p r o f i l e -  manually from 
t ks  AFD using the displays. Noteworthy was the f a c t  t ha t  three o f  these 
were carr ied through landing and r o l l  out using the integrated d isp lay 



format discussed e a r l i e r  and shown i n  f i gu re  10. One add i t iona l  landing 
from the AFD was made using TV camera "imaqt!c;y" superimposed on the  
basic symbology ( i  .e., no computer genet a t t - d  runway). These were a1 1 
low-rate-of descent, on-center1 i ne 1 and-:rigs 

These landings were g rea t l y  aided b:4 app l ica t ion  o f  recent TCV 
research i n t o  long i tud ina l  contro l  and d i sp l  ny in tegrat ion.  The research 
program has been conducted through analys is  and simulation, t r e a t i n g  the 
longi tudinal  cont ro l  and the f l i g h t  path angle symbology o f  the v e r t i c a l  
s i t ua t i on  d isp lay (EADI)  as a s ing le  system. The a i r c r a f t  long i tud ina l  
response time w i t h  respect t o  cont ro l  column inputs was reduced and 
damping increased through appropriately tas 1; red e levator  r a t e  and 
displacement using f ly-by-wire cont rc i  and s ! a b i l i t y  augmentation. A t  
the same time, a p red i c t i ve  f l i g h t  path angle symbology responded 
i m e d i a t e l y  t o  column commands, w i th  ac"ua1 f l i g h t  path angle symbology 
fol lowing the predicted value very quick;y cr~d without  overshoot. Thus 
p i t c h  contro l  and displays were l inked i n  a quick response, h igh ly  
damped system which vas t l y  improved the a b i l i t y  t o  t rack  as wel l  as t o  
f l y  accurately through a f l a r e  maneuver. A repo r t  on t t ~ f  s work i s  i n  
preparation. However, judgement o f  height through the current  generated 
runway symbology i s  not  considered t o t a l l )  adequate f o r  f l a r e  i n  an 
operational sense. Work t o  improve such a iso lays i s  continuing. 

A repor t  on the t rack ing performance ~f the a i r c r a f t  i n  the automatic 
mode during these tests/demonstrations i s  'n weparat ion. 

JFK TEST/DEMONSTRATION 

Fol 1 owing the Buenos A i  res operation, TRSn MLS test/demonstrations 
were conducted a t  J. F. Kennedy (JFK) A i rpo r t  i n  New York from December 
5 through December 13, 1977. These operations were f o r  a i r l i n e  person- 
nel , loca l  and s ta te  av ia t ion  o f f i c i a l s ,  congress iona l  observa-s , interna-  
t iona l  observers, the press and televis- ion. 

The TRSB MLS conf igurat ion provided a t  JFK was @asic Wide (aperture) 
w i th  +60 degrees azimuth coverage. The MLS antenna, were set  up f o r  
runway 13L. No f l a r e  antenna was provided. No g- ~ u n d  based t rack ing 
data have been obtained by the NASA a t  t h i s  dat . 

The Canarsie approach i n t o  JFK, an efr c t i v n  noise abatement proce- 
dure, i s  shown as a published approach D', ~e i n  Figure 30. ' h e  approach 
i s  performed only under visual cond i t io  ;s w i th  a 244 rn ( 6 ~ 0  f t )  c e i l i n g  
and 2 n. m i .  v i s i b i l i t y  minima. The v isual  por t ion  o f  t h i s  approach i s  
defined by high i n t e n s i t y  f lashing lead- in l i gh t !  . r ~  the ground which 



genera l l y  f o l l o w  Shore Parkway. This approach avoids h i gh  dens i t y  r e s i -  
d e n t i a l  areas and saves a i rspace and t ime. Th is  ap;-oach procedure makes 
an exce l l en t  case f o r  an MLS vo lumetr ic  coverage p rec i s i on  guidance 
system t o  a1 low s i m i l a r  approaches under instrument meteoro log ica l  condi  - 
t ions .  The s i gn i f i cance  o f  being ab le  t o  perform such c l o s e - i n  pa t te rns  
dur ing instrument f l i g h t  cond i t i ons  i s  obvious from f i g u r e  31 showing 
the New York termina l  area fo r  a  t y p i c a l  l and ing  d i r e c t i o n .  The ILS 
pat terns f o r  the  several  a i r p o r t s  over1 i e  one another 's  c o n t r o l  zones 
(shown by dashed ou tl i nes ) . 

There i s  no usable a i rspace between t h e  con t ro l  zones i n  t h i s  case. 
I f  one could  use Canarsie-type approach pa t te rns  as depicted, u n d ~ r  IMC, 
the approach pa t te rns  could be contained w i t h i n  the  i n d i v i d u a l  co r i t ro l  
zones, thus f r ee ing  airspace f o r  short-haul  o r  o the r  t r a f f i c  use between 
con t ro l  zones and a1 l e v i a t i n g  some o f  the t r a f f i c  c o n f l i c t  and capac i ty  
problems o f  the  major a i r po r t s .  

The test /demonstrat ion p r o f i l e  chosen was an over lay  o f  t he  publ ished 
Canarsie approach t o  runway 13L shown i n  f i g u r e  30. F igure 32 shohs the 
TRSB MLS approach i n  d e t a i l  from Canarsie VOR ( C R I )  inbound. A constant 
3-degree g l i d e  path was fol lowed. The dashed l i n e  i nd i ca tes  t he  MLS 
azimuth coverage provided. The t u r n  i s  a  constant rad ius  o f  4,500 rn and 
requi res a  very shal low average bank angle o f  about 8 degrees. The 
s t r a i g h t - i n  p o r t i o n  was on ly  0.44 n. m i  t o  the d i sp l ac rd  threshold .  

It i s  o f  i n t e r e s t  tha t ,  p a r t i c u l a r l y  dur ing  the development per iod  
p r i o r  t o  the demonstrations, l o c a l  ATC c o n t r o l l e r s  from the cocnniori IF!? 
room and the  tower a t  JFK were c a r r i e d  on each f l i g h t .  The c o n t r o l l e r s ,  
as a  r e s u l t ,  became en thus ias t i c  i n  support o f  the  advanced e x p e r i n ~ ~ n t  . 
The displayed s i t u a t i o n  in format ion,  p a r t i c u l a r l y ,  impressed t he  con t ro l  - 
l e r s .  FAA personnel w i t h  ATC experience from Washington Headquarters 
and NAFEC were a l so  assigned t o  the common IFR room and tower t o  adv ise 
and a s s i s t  l o c a l  personnel du r ing  the  JFK f l i g h t s .  Having e n l i s t e d  the 
enthusiasm of the l o c a l  con t ro l l e r s ,  a  depar tu re /a r r i va l  RNAV pa t te rn ,  
shown i n  f i gu re  33, was mutua l ly  agreed on t h a t  was expedi t ious and 
p red ic tab le  i n  ternis o f  time, and was s p e c i f i c  and accurdte i n  terrlis o f  
t rack .  The nav iga t ion  a f t e r  t akeo f f  was therea f te l -  l e f t  up t o  the NASA 
crew, w i t h  radar  fo l l ow ing .  The a i r c r a f t  c a p a b i l i t y  and ATC cooperation, 
a f t e r  the c o n t r o l l e r s  became f a m i l i a r  w i t h  t he  program and equipment, 
g r e a t l y  expedited the demonstration f l i g h t s .  General ly, because o f  
t r a f f i c ,  landings were f u l l  stop w i t h  t akeo f f  i n  the oppos i te  d i r e c t i o n  
on runway 31R. 



Strong tai lwinds o f  the order o f  20 knots o r  more occurred on 5 of 
the 8 demonstration days. A t o t a l  of 45 autolands were accomplished 
during the whole exercise. Th i r t y  approaches performed during the 
formal demonstration f l i g h t s  resulted i n  successful autolands, which was 
considered very successful under the circumstances . Eight approaches 
required takeover f o r  manual landings. These resul ts are a t t r ibuted t o  
the strong northwest winds a t  20-30 knots, changing from a crosswind t o  
a ta i lw ind during the f i n a l  turn, combined wi th  the narrow autoland 
capture 1 i m i  t s  very close t o  the threshold. This i l l u s t r a t e s  the l im i ta -  
t ions o f  the ILS- type capture techniques current ly implemented. Examples 
o f  on-board recorded tracking data from typical  approaches are i 11 ustrated 
i n  f igures 34 and 35. It i s  apparent that  MLS RNAV la te ra l  tracking 
errors generally d id  not exceed 12 m during the turn onto f i n a l  approach, 
and were reduced t o  3 m or  less i n  the autoland mode. The ver t i ca l  path 
errors i n  the MLS RNAV mode were about 6 m p r i o r  t o  autoland capture and 
about 3 m a f t e r  capture. A report on a i r c r a f t  automatic tracking perform- 
ance during these f l i g h t s  i s  i n  preparation. 

During the ear ly development f l i g h t s  a t  JFK one manual approach 
using CWS was performed from the AFD. The p i l o t  wished t o  assess the 
adequacy o f  the computer generated runway symbology for close-i  n runway 
alinement. The p i l o t  overshot the runway centerl ine so tha t  a successful 
recovery maneuver f o r  landing could not be comfortably accomplished 
using the displays. The forward f l i g h t  deck p i l o t  took over f o r  a 
successful maneuver and landing. However, the p i l o t  who attempted the 
manual approach from the AFD be1 ieves the d i f f i c u l t y  l ay  w i th  the la te ra l  
control system characterist ics and t o  a lesser degree, w i th  the display 
i t s e l f .  It i s  planned i n  the near future t o  improve the l a te ra l  control 
system for more precise use o f  the display system capabi l i t ies,  such as 
was done for the p i t ch  axis. 

SUMMARY OF CURVED APPROACHES WITH TRSB MLS 

A sumnary o f  the f l i g h t  p ro f i l es  flown under automatic control as 
well as i n  manual control modes during the NAFEC, Buenos Aires and New 
York operations i s  shown i n  f igure 36. The approaches were, i n  the 
order l i s t e d  above, increasingly more d i f f i c u l t  i n  that  the curved paths 
were carr ied closer t o  the runway before alinement. The accuracy of the 
MLS was high, and the a i r c ra f t  performance good, considering the unfavor- 
able winds encountered and the lack o f  f u l l  development o f  the automatic 
control techniques and control laws f o r  u t i l i z a t i o n  o f  MLS. 



PILOT/OBSERVER REACTION TO MLS PROFILES 

During the course o f  the TRSB MLS deve1opndr:t f l i g h t s  and demonstra- 
t ions  w i t h  the  TCV 8-737 a i r c r a f t  over 400 a u t m t i c  landings and r o l l  
outs from curved approach paths have been perfcrned. Also, more than 
700 observers have been car r ied  dur ing the ac t ~ s l  demonstrations. The 
la rge  ma jo r i t y  of those coming o f f  the f l i g h t s  appeared impressed and 
enthusiast ic  about the d isp lays i n  par t i cu la r ,  and the observations of 
the p ro f i l es  from the f r o n t  cockpi t  as wel l  as the cabin seats. The 
p r o f i l e s  f lown have a l l  been general ly  acceptable and comfortable from 
the p i l o t s '  and observers' standpoint and have drawn no unfavorable 
comments. The MLS p r o f i l e s  have actual l y  involved mi lder  maneuvers than 
those experience i n  v isual  f l i g h t .  The most vigorous maneuvers encoun- 
tered t o  date have been those immediately fo l low ing "MLS enable" a t  
which time t r a n s i t i o n  from normal RNAV t o  MLS RNAV occurs. These have 
not  been abrupt, bu t  are surpr is ing, and t h e i r  magnitude depends on the 
Rh,W e r r o r  incurred. These maneuvers do have t o  be prompt, necessari ly, 
t o  e l iminate the f l i g h t  path e r ro r  before i t  becomes c r i t i c a l  f o r  the 
f i n a l  approach. 

I n  the future, 4-0 (t ime cont ro l led)  f l i g h t s  w i l l  be requi red for 
c o n t r o l l i n g  the a r r i v a l  and landing o f  t r a f f i c  a t  major a i rpo r t s  i n  a 
sequence tha t  w i l l  expedite the flow of t r a f f i c  f o r  maximum capacity. 
It seems probable t h a t  4-D control ,  the basis f o r  s t ra teg i c  contro l  
concepts, w i  11 be exercised from takeof f  through landing w i t h  adjustments 
t o  a r r i v a l  times being made en route and w i th  f i n e  tuning being appl ied 
i n  the metering and spacing t o  the runway threshold. The l a t t e r  phase, 
from cru ise  through descent t o  t k ?  runway, i s  discussed i n  the fo l low ing 
paragraphs on Metering and Spac' o, 4. 

Limited f l i g h t  t es t s  have been mzze over a demandinq one-hour t e s t  
pa t te rn  using radar t rack ing t o  determine the magnitude o f  e r ro rs  w i t h  
the navigat ion system, inc luding the time axis, These tes ts  are described 
and some resu l t s  f o r  the automatic mode pub1 i shed i n  ( re f .  9) . For the 
normal mode of navigat ion w i th  the i i - r t i a l  system using duel DME update, 
the resu l t s  ind ica te  t h a t  the mean tinie e r ro r  t o  be expected a t  any 
way po in t  (where ground speed has been speci f ied) ,  inc luding the outer 
marker on a r r i v a l  (o r  equivalent),  i s  1.4 seconds w i th  a 0.7 second 
standard deviation. Further, 4-D f l  i gh ts  t o  landing have shown t y p i c a l  
e r ro rs  o f  3-5 seconds, the d i f ference from the t e s t  pa t te rn  er rors  
quoted being due t o  the f a c t  t ha t  the f i n a l  approach, being cont ro l led  



w i t h  respect t o  airspeed, i s  subject t o  wind effects. Errors a t  low 
elevat ions may a lso  increase due t o  loss o f  dual DME update i n  some 
areas. 

I n  the sumner of 1977 a 4-D f l i g h t  demonstration was performed by 
NASA f o r  a small group o f  v i s i t i n g  A i r  Force (WADC), a i r l i n e ,  Congres- 
sional s t a f f  and magazine personnel. The f l i g h t  was from Langley i n t o  
North Carolina and r e t u r n  f o r  an ILS landing a t  Norfolk, a t o t a l  distance 
of 259 n. m i .  The f l i g h t  had a scheduled landing time. Immediately 
a f t e r  takeof f  from Langley the a i r c r a f t  was placed under 4-D automatic 
contro l .  The major po r t i on  o f  the f l i g h t  was accomplished automat ica l ly  
except f o r  a maneuver t o  i l l u s t r a t e  manual cont ro l  c a p a b i l i t y  i n  the 4-D 
mode as discussed i n  ( re f .  10). During the f l i g h t  l e g  from waypoint LVL 
t o  RMT, as i l l u s t r a t e d  i n  f i g u r e  37, a 6-minute delay i n  scheduled 
a r r i v a l  time was simulated. Using the veloc i ty-vector  CWS mode (holds 
t rack and path angle) the p i l o t  manually entered a holding pattern, 
shown i n  f i g u r e  38, then reca l led  the appropriate f l i g h t  plan page when 
on the "outbound" t rack  and entered the new a r r i v a l  t ime a t  RMT i n  the 
navigat ion computer. This change "r ipp led"  backward and forward through 
a l l  f l i g h t  legs and reset  the time box (current  scheduled pos i t i on ) .  
Since the EHSI shows only magnetic t rack i t  can be seen i n  f i g u r e  38 
t h a t  the ve loc i t y  vector CWS mode held t rack  very wel l  against the 
ex i s t i ng  90 k t  d i r e c t  crosswind from the west. It i s  obvious t h a t  
during the turns considerable d r i f t  occurred, necessi tat ing an in te rcept  
angle inbound. Although t h i s  was the f i r s t  such maneuver f o r  the p i l o t ,  
he v:s able t o  make use o f  the p red i c t i ve  t rend vector ahead o f  h i s  
a i r c r a f t  symbol ( the forward ends o f  the dashes represent 30, 60 and 90 
seconds ahead), and the rescheduled time box w i t h  the 30, 60, and 90 
second time dots ahead o f  it, t o  judge the s t a r t  o f  h is  in-bound t u r n  
and the maneuver t o  re-acquire the time box. Other aids t o  the p i l o t  
for time contro l  are a dashed and displaced f l i g h t  path accelerat ion 
command bar (see label F l i g h t  Path Acceleration on f i g u r e  11 ) f o r  use of 
t h ro t t l es ,  and a readout o f  time e r ro r  and time e r r o r  per  minute, separa- 
t i o n  o r  closure, on the NCDU display shown i n  f i g u r e  10. Figure 38 
shows tha t  the p i l o t  was able t o  close on the inbound t rack  only  5 
seconds behind the time box. He continued c los ing  u n t i l  he again coupled 
w i t h  the automatic mode 1.5 seconds behind the time box. The a i r c r a f t  
a r r i v a l  a t  touchdown (rescheduled) was w i t h i n  5 seconds o f  t h a t  planned. 

Consideration i s  being given t o  rev i s ing  the p red i c t i ve  vector 
dashes t o  represent one and two minute in te rva ls ,  which may be more 
convenient f o r  use i n  performing standard r a t e  turns (2  minutes per 180 
degrees). Indeed, the pred ic t i ve  information could we1 1 have several 
a1 te rna t ive  representations and scalings, such as distance o r  time for  a 
metering and spacing environment. 



An important conclusion i s  t ha t  the  d isp lays and CWS modes g ive  the 
p i l o t  an a1 te rna t i ve  method o f  accurate navigat ion and cont ro l ,  which 
permits him quick reac t ion  time f o r  an occasion such as the change i n  
a r r i v a l  time requested, o r  avoiding a threat .  The t rack  angle hold mode 
gave him time on the outbound leg  t o  reporgram the computer t o  the 
readjusted time f o r  f u r the r  automatic f l i g h t .  Without the d isp lays he 
would not have been able t o  execute t h i s  type o f  re-posi t i o n i n g  pa t te rn  
w i th  any degree of expediency o r  prec is ion on h i s  own. I t  i s  f e l t  t h a t  
t h i s  cont ro l /  d isp lay c a p a b i l i t y  i s  very necessary f o r  the wide spread 
success o f  RNAV/4-D navigat ion i n  the fu tu re  envi ronment . 

OTHER RESEARCH ACTIVITIES 

Addit ional research a c t i v i t i e s ,  present ly being focused o r  planned 
as fu tu re  e f f o r t s ,  a re  required t o  accomplish the TCV object ives and t o  
address the many operational aspects o f  the terminal area operat ion as 
previously ou t l ined i n  f i gu re  6. These areas o f  research are: metering 
and spacing, l oca l  f low managementlprofi l e  descent, curved path guidance 
f o r  both automatic and manual f l i g h t ,  wind shear hazard a l l e v i a t i o n ,  
landing displays, landing and turnof f  operations and cockp i t  d isp lay  of 
t r a f f i c  information. The extent of research accompl ished o r  planned i n  
each o f  these areas varies from f e a s i b i l i t y  studies o r  bene f i t  analyses, 
t o  simulations, and t o  f l i g h t  tes ts  f o r  v e r i f i c a t i o n  and demonstration. 
Each o f  these areas o f  research are discussed below. 

METERING AND SPACING - Metering and spacing (M & S)  i s  an i n i t i a l  
time-based contro l  concept f o r  con t ro l l i ng  a i r c r a f t  from the metering 
f i x  t o  the runway. A f i xed  path speed cont ro l  concept ( o f  M & S)  current-  
l y  under study i s  one i n  which the ATC aids an a i r c r a f t  t o  achieve a 
scheduled landing time by issuing a i r  speed commands t o  the p i l o t  a t  
preselected locat ions i n  the airspace. 

A j o i n t  NASA/FAA study has been implemented t o  evaluate appl i c a t i o n  
o f  the microwave landing system (MLS) t o  an automated terminal area 
metering and spacing concept. Present e f f o r t s  include considering more 
f u l l y  the in te rac t ions  between niul t i p l e  a i r c r a f t  i n  the terminal area. 
I n  addit ion, i t  i s  necessary t o  determine i f  theoret ica l  resu l t s  w i l l  be 
confirmed w i th  human p i l o t s  i n  the contro l  loop. Also, i t  i s  necessary 
t o  determine i f  the maneuvers f o r  path s t re tch ing  and speed cont ro l  are 
acceptable t o  the p i l o t s .  



Figure 39 i 11 ustrates the cont ro l  procedures necessary f o r  the 
metering and spacing concept being evaluated and i s  discussed f u r t h e r  i n  
( r e f .  1 1 )  A t en ta t i ve  schedule and estimated time o f  a r r i v a l  (ETA) i s  
computed upon ent ry  o f  the a i r c r a f t  i r ~ t o  the terminal area and the 
schedule i s  adjusted as indicated on the f i g u r e  during the approach 
maneuver. The f i n a l  schedule adjustment i s  done using a d i  rect-course- 
e r ro r  (DICE) readout technique. This technique determines the e r r o r  a t  
the runway which occurs i f  an a i r c r a f t  turns immediately t o  predetermined 
points  on the path. For t h i s  research i t  i s  assumed t h a t  a l l  a i r c r a f t  
have the c a p a b i l i t y  f o r  u t i l i z i n g  the MLS and 2-D area navigation. 

The terminal area t r a f f i c  simulat ion has been integrated w i t h  the  
TCV cockpi t  simulator. The simulat ions are being conducted t o  determine 
s t a t i s t i c s  on de l i ve ry  e r ro r  t o  the runway threshold and other specif ied 
points along the approach path. 

LOCAL FLOW MANAGEMENT AND PROFILE DESCENT - Local f low management 
(LFM) i s  a term used t o  describe a system o f  matching the demand on an 
a i r p o r t  t o  t ha t  a i r p o r t ' s  capacity by using time cont ro l  a t  the metering 
f ixes.  A separate but  c losely  re la ted  technique used w i t h  the LFM i s  
p r o f i l e  descent (PD), an uninterrupted descent from c ru i s ing  a1 t i tude l  
leve l  t o  in te rcept ion  o f  a g l i d e  slope o r  minimum a l t i t u d e  speci f ied f o r  
the i n i t i a l  approach segment. Figure 40 ill ustrates a t y p i c a l  LFM/PD. 
FAA c i r cu la rs  A. C. No. 90-71 and 90-73 describe the procedures f o r  the 
PD and LFM, respect ively.  The LFM i s  a time base metering scheme t o  
systematical ly contro l  t r a f f i c  p r i o r  t o  de l i ve ry  t o  the Approach Control 
and the p r o f i l e  descent allows a clean descent a t  o r  near f l i g h t  i d l e  
from en route cru ise a l t i t u d e  t o  the f i n a l  approach. I n i t i a l l y ,  these 
two techniques are being introduced a t  the Dal las-Fort  Worth and Denver 
a i rpor ts .  

It i s  planned t o  evaluate the u t i l i t y  o f  the TCV Program EHSI 
displays f o r  execution o f  p r o f i l e  descents. The TCV a i r c r a f t  system i s  
capable o f  p red ic t ing  speed o r  time a t  a way po in t  ahead based on the 
instantaneous condit ions whi l e  simul taneously making good a desired 
p r o f i l e .  The task t o  be performed i s  t o  f o l l ow  the p r o f i l e  i n  a precise 
manner t o  meet the ATC constra ints  on speed, a l t i t u d e  and time, and 
s t i l l  achieve a fue l  e f f i c i e n t  descent. U t i l i z i n g  the EHSI d isp lay w i t h  
range and speed o r  t ime symbology, assuming s u f f i c i e n t  contro l  and 
typ ica l  wind condit ions, the predefined p r o f i l e  f o r  the terminal area 
w i l l  be flown i n  simulat ion and i n  f l i g h t  test .  

Measurements sha l l  be taken t o  provide information on the f o l  lowing 
areas o f  research in te res t :  performance w i t h  respect t o  time and speed, 
fuel ef f ic iency,  p i  l o t  and contro l  l e r  workload, and communication loading. 



GENERALIZED CURVED PATH GUIDANCE AND CONTROL FuZ AUTOMATIC FLIGHT - 
E a r l i e r  i n  t h i s  paper i t  has been pointed out that,  t o  date, automatic 
f l i g h t  w i t h  the TCV 0-737 wi th in  MLS coverage has used, as an expedient, 
an ILS capture technique. During curved path por t ions o f  the approach 
the RNAV system uses MLS signals through i t s  normal cont ro l  laws t o  
de l i ve r  the a i r c r a f t  t o  the f i n a l  s t r a i g h t - i n  por t ion  o f  the approach. 
Del ivery must be w i th in  narrow l i m i t s  o f  displacement and cross-track 
ve loc i t y  w i th  respect t o  the extended runway center1 i n e  and w i t h  wings 
essen t i a l l y  l eve l  l a t e r a l l y .  When these condit ions are s a t i s f i e d  and 
"land arm" has been selected automatic t rans fer  o f  contro l  t o  the more 
precise autoland mode occurs i n  which the f l i g h t  cont ro l  computers 
contro l  the a i r c r a f t  through the landing and r o l l  out. Elements of the 
displays which are dr iven by MLS are a lso af fected by t h i s  t ransfer .  

This capture technique has resul ted i n  several approaches where 
strong and changing cross and ta i lw ind  components have resu l ted  i n  
captures too l a t e  t o  achieve a reasonably acceptable automatic landing. 
A more sa t i s fac to ry  technique would be t o  f l y  throughout the MLS coverage 
i n  the autoland mode without the need f o r  the ILS-type capture. I n  
order t o  accomplish t h i s  the development o f  d i g i t a l  cont ro l  laws and 
a l g o r i  thms f o r  general curved path guidance throughout the MLS coverage 
through landing and r o l l  out i s  under study. These laws w i l l  be appl i ca-  
b l e  t o  both automatic guidance and t o  d isp lay information f o r  monitor ing 
o r  f o r  manual contro l .  

CURVED PATH GUIDANCE FOR MANUAL FLIGHT - As pointed out i n  the 
sect ion describing the manual l y  contro l  led  approaches a t  NAFEC i n  1976, 
i t  was not feas ib le  f o r  the p i l o t s  t o  perform the c lose- in curved approach- 
es t o  the tqunway s a t i s f a c t o r i l y  when i t  was necessary t o  d i v ide  a t ten t i on  
between the EHSI  and the EADI.  The added information on the in tegrated 
d isp lay great ly  aided the task o f  a l i n i n g  w i th  the runway as long as 
enough time i s  avai lab le f o r  accurate t rack adjustment during a1 inenlent. 
Experience indicates tha t  w i th  the in tegrated d isp lay  for the paths 
flown, the minimum length f o r  a s t r a i g h t - i n  f i n a l  approach should be 
1 t o  1.5 n. m i .  t o  provide the needed time for t rack adjustment. 

Some o f  the l i m i t a t i o n s  o f  the in tegrated d isp lay f o r  t h i s  task may 
be a t t r i bu ted  t o  the need t o  s h i f t  a t t en t i on  t o  the t rack angle po in ter  
t o  a i d  alinement, the l i m i t e d  d isp lay "lool* angle" o f  20 degrees w i t h  
which t o  acquire the computer generated runway symbology i n  a t u r n  ( the  
angular coverage o f  the EADI  i s  t15 degrees v e r t i c a l l y  and 220 degrees 
hor izonta l l y ) ,  and the magnif icat ion r a t i o  which i s  only  0.32. A possible 
improvement i n  the d isp lay might be the add i t ion  o f  s u f f i c i e n t  texture 
o r  character i n  the ground plane o f  the depicted runway t o  a i d  i n  the 
"sensing" o f  alinement, which might a l l e v i a t e  the need t o  s h i f t  a t t en t i on  
t o  the t rack angle pointer  so often. 



Considering these l im i ta t ions ,  i t  i s  f e l t  t ha t  concepts such as 
path-way-in-the-sky o r  tunnel - in-the-sky f o r  large-angle, c l  ose-f n 
curved paths should be investigated. These concepts would provide 
continous curved path guidance as wel l  as t rack ing  and p red i c t i ve  in for-  
mati on throughout the turn. Consequently a pathway-in-the-sky has been 
designed and explored i n  a pre l iminary simulat ion ( r e f .  12). Tunnel - i n -  
the-sky and other concepts also w i l l  be explored a t  Langley. I n  addi t ion,  
Langley i s  sponsoring work f o r  development of a id ing  symbology f o r  
runway alinement i n  combined s i t ua t i on  and p red i c t i ve  format ( ref .  3 ) .  

The work described i s  aimed toward prov id ing the p i l o t  w i th  adequate 
information f o r  conf ident monitoring o f  the progress o f  the a i r c r a f t  
toward the ground on the advanced p ro f i l es  now possible, and fo r  takeover 
a t  any stage of the approach for completion o r  other contingency act ion.  

WIND SHEAR SENSING AND DISPLAY - A recent ser ies o f  a i r c r a f t  crashes 
a t t r i bu tab le  t o  severe wind shear have focused a t ten t i on  on the shear 
hazard and have led  t o  the establishment o f  a la rge  program for  research 
on means t o  a l l e v i a t e  the hazard. It i s  f e l t  t ha t  no matter how we11 
one estimates shear from a comparison o f  ground speed and airspeed, o r  
from sensors near ground level ,  the p i l o t  needs immediate in format ion on 
shear encounters on h i s  primary displays w i t h  which he can i n s t i n c t i v e l y  
take the proper course and degree o f  act ion. It was decided t o  explore 
wind shear instrumentation using the EADI i n  the TCV B-737 since t h i s  i s  
the primary approach instrument. The E A D I  of the TCV 8-737, i n  i t s  
normal format, presents instantaneous f l i g h t  path aiming point ,  der ived 
from the i n e r t i a l  system, w i th  a p a i r  o f  separated wedges (see f igure 
11 ), which move up and down w i th  respect t o  the horizon f o r  cl imb o r  
dive, and l e f t  and r i g h t  from the a i rp lane symbol t o  i nd i ca te  l a t e r a l  
d r i f t .  They remain p a r a l l e l  t o  the horizon a t  a l l  times. To the l e f t  
o f  the wedges i s  a bar representing accelerat ion along the f l i g h t  path, 
or  po ten t ia l  f l i g h t  path angle. When t h i s  bar i s  a l ined w i t h  the wedges 
the a i rp lane i s  i n  s tab i l i zed  f l i g h t  w i th  respect t o  ground speed. 

To adapt the EADI t o  shear detect ion the po tent ia l  f l i g h t  path 
angle bar was mechanized t o  separate from alinement w i th  the f l i g h t  path 
wedges i n  response to  airspeed error,  re la ted  t o  a selected "bug" speed, 
and airspeed e r ro r  rate.  

The bar moved above the wedges if speed were high and below i f  
speed were low. The bar thus became a th rus t  command when misal ined 
w i th  the wedges. The f l i g h t  path wedges retained t h e i r  normal funct ion. 
The p i l o t ,  when encountering shear, would cor rec t  changes i n  the f l i g h t  
path angle, as indicated by the wedges, w i th  e levator  input  and would 
correct  airspeed changes, indicated by the th rus t  command bar, w i t h  



t h r o t t i e  use i n  the same sense as f o r  speed contro l .  The p i l o t s  f w n d  
t h i s  d isp lay very e f f e c t i v e  i n  coping w i t h  shear of the normal va r i e t i es .  
The d isp lay w i  11 be invest igated f o r  effectiveness i n  severe thunderstarm 
shears, d e f i n i t i o n  o f  which have recent ly  been obtained f o r  implementation 
i n  the simulation. These studies w i l l  be reported when the evaluat ion 
o f  the d isp lay effect iveness w i t h  the severe shears i s  completed. So 
far, current  au top i l o t  systems have not  been able t o  prevent shor t  
landings w i th  some o f  these severe shears. 

New avtomatic contro l  laws for  the f i n a l  approach at c being develop- 
ed t o  an t ic ipa te  wind shear and provide lecd in for :  i ti on f o r  improved 
contro l .  The wind shear i s  ant ic ipated from ground speed and airspeed 
differences along the approach path compared w i t h  an t ic ipa ted  ground 
speed a t  touchdown derived from known ground winds. Ground speeds i n  
f l i g h t  can be determined from sources such as an MLS guidance system, 
ILS co-located DME, I n e r t i a l  o r  Doppler navigat ion system etc.  I t  
remains t o  be seen if such ant ic ipa tory  automatic systems can cope 
successful l y  w i th  the severe storm shears. 

I n  add i t ion  t o  d isp lay concepts, a new t o t a l  energy probe ( r e f .  13) 
i s  being evaluated f o r  app l ica t ion  as a wind shear sensor on the TCV B- 
737. It senses a pressure ct,dnge of - lq,  a combination o f  s t a t i c  and 
dynamic pressures, throughout the required speed range. This nieasure- 
ment i s  insens i t i ve  t o  s ides l i p  and angle of at tack through l s rge  ranges, 
considering only  the probe i t s e l f .  An analysis o f  how t o  use t h i s  
sensor f o r  wind shear detect ion and d isp lay app l ica t ion  i s  underway. 
The output o f  the sensor should read a constant value w i th  constant 
th rus t  and confir,r lration under constant a i r  mass condit ions regardless 
o f  f l i g h t  y t h  a1,5le var iat ions.  A change i n  wind d i rec t i on  and/or 
ve loc i ty ,  however, w i l l  cause a change i n  f l i g h t  path angle, correctable 
by appl i c a t 2 ~ n  o f  long i tud ina l  contro l ,  and/or a change i n  airspeed 
which w i l l  be sensed to  derive dn appropriate th rus t  command t o  cowpen-- 
sate for  the airspeed change. 

LANDING DISPLAYS - A i r  t ransportat ion has become indispensable as a 
major t ransportat ion system i n  the conduct of nat ional  and in te rnat iona l  
a f f a i r s .  Schedule r e l i a b i l i t y  and safety i n  the landing approach i n  low 
v i s i b i l i t y  must be improved f o r  fu tu re  operations. An obvious step 
toward t h i s  capab i l i t y  i s  required f o r  fu tu re  systems i n  order to :  

(1 ) Improvb: schedule re1 i a b i l  i t y  w i th  regard t o  weather ( r e f .  14) ,  
not  f o r  " a i r l i n e  economics" so le ly ,  but  f o r  the benef i t  o f  
industry, m i  1 i tary, and tho t rave l ing  pub1 i c  (nat ional econoriiic 
we1 fa re) .  



(2) Reduce accident potent ia l  present i n  "See-to-Land" concepts i n  
a l l  reduced v i s i b i l i t i e s ,  CAT I & I 1  included. 

(3) Reduce landing aborts t o  the minimum possible because o f  the 
impact on an already congested t r a f f i c  s i tuat ion.  

CAT I11 conditions ( i n  an "effect ive" sense) also occur i n  conditions 
other than fog wi th l i g h t  winds, such as i n  strong crosswinds wi th 
blowing and d r i f t i ng  snow, f o r  example. Thus, CAT I11 systems rnmt be 
designed wi th wider o ra t iona l  envelopes (headwinds, turbulence, shear, 
crosswinds, tai lwinds !? than they are today. To add p i l o t  confidence and 
acceptance t o  a t r u l y  operational CAT I11 System, i t  i s  f e l t  tha t  
s i tuat ion information approaching an "absorb-at-a-glar .ow format must be 
available t o  the p i l o t .  The display must be informative, accurate and 
compel l i n g  enough tha t  the p i l o t  does not feel the need t o  look elsewh~re 
for ? l i g h t  control information. It must be adequate f o r  the p i l o t  t o  do 
sanething about h i s  s i tuat ion i f  it i s  not t o  h i s  l i k i n g  - not simply t o  
execute an abort t o  cause more problems, unless necessary. In CAT I11 - 
l i k e  conditions i t  i s  considered un l ike ly  that  a p i l o t  can concentrate 
on transient, d istor ted and inadequate outside references f o r  judgement 
o f  the c r i t i c a l  landing maneuver and make use o f  skeletonized HUD informa- 
t i on  a t  the sane time, except t o  t e l l  him where t o  look. Considering 
these factors i t  is ,  therefore, reasoned tha t  head-down-display (HOD) 
development i s  necessary i n  achieving safe and re1 iab le  operations i n  
a l l  v i s i b i l i t y  conditions. Recent European developments tend t o  substan- 
t i a t e  t h i s  reasoning ( re f .  15). 

I t  i s  f e l t  tha t  i f  the display i s  good enwgh t o  give the p i l o t  the 
infonr,ation and confidence f o r  monitoring an automatic approach, regard- 
less o f  outside v i s i b i l i t y ,  i t  may very well be adequate for manual 
landing, assuming sane form o f  augmented control system. I f  t h i s  were 
true, then p i l o t s  would be able t o  r e ta i n  currency by executing landings 
wi th i t  i n  normal as well  as low v i s i b i l i t y  operations. 

This i s  not t o  say that  the head-up-display (HUD) should not  be 
used. It i s  thought that  the p i l o t  monitoring the approach should stay 
on a basic HDD throughout approach and landing. The overal l  appt-oach 
and landing manager should, perhaps, have a FUD f o r  whatever inforn~a t i on  
he can obtain wi th i t  and outside visual references. A1 so, the HUD may 
be a useful backup against f a i l u re  o f  the HOD i n  the eventual system. 

It i s  f e l t  that  an operational CAT 111 "landing" display should be 
pursued on a long range basis. Tod~tl, such a display does not ex is t  i n  
an operational sense. However, Langiey i s  sponsoring research and 
development of landing display technology. Computer-genera ted images o f  
te r ra in  and a i rpor t  features and runway texture and markings are being 



evaluated with respect t o  contributions t o  approach and, part icularly, 
landing performance. A modest range o f  color, shading and a spread of 
magnification r a t i o  are being investigated, a l l  i n  a head-up posit ion as 
though looking through the windshield i n  th is  case. An oculometer i s  
being used also t o  obtain look points f o r  d i f ferent  p i l o t s  wi th  the 
d i f fer ing display formats. The data are being analyzed t o  see i f  an 
understanding can be obtained o f  what information the p i l o t  i s  seeking 
and using. The :) i lots being evaluated include research, a i r l ine ,  instruc- 
to r  and executive types. No conclusions have been drawn as yet as the 
program i s  ongoing. 

LANDING AN0 TURNOFF OPERATIONS - Increased eff iciency and capacity 
of  operations i n  the terminal area are considered important TCV research 
objectives. As en route, descent, and approach operations improve, the 
landing and runway occupancy time w i l l  became the major constraint i n  
achieving overall capacity increases. 

As i l lus t ra ted  i n  f igure 41, (ref. 16). the potential increase i n  
capacity result ing from a reduction i n  spacinq i s  signif icant. I n  the 
study o f  (ref. 16) a t r a f f i c  mix of only two types o f  a i rcraf t  was used, 
a large a i r c ra f t  with a f inal approach speed o f  127 knots, and a heavy 
a i r c rd f t  with a f i na l  approach speed o f  137 knots. When compared t o  
current vortex separation standards the gain i n  capacity wi th  a 3 n. m i .  
separation goes up appreciably with the increase i n  percentage of heavy 
a i rcraf t  (due t o  speed) as s b n  i n  the figure. This i s  a signif icant 
factor as more heavy a i rc ra f t  qo in to  service. Also noteworthy i s  the 
signif icant capacity gain due t o  increased delivery accuracy a t  the 
runway i n  t e n s  o f  time. There i s  thus an urgent requirement for better 
performance o f  the future t r a f f i c  control systems i n  terms of t ime. The 
curves for  2 n. m i .  separation i l l us t ra te  what nay be achieved with 
further a1 leviat ion o f  the vortex hazard and a reduction o f  runway 
occupancy times. 

Ef f ic ient  operation result ing i n  high capacity cannot be achieved 
unless a i rcraf ts  can land and consistently ex i t  the runway i n  minirnm 
time. This must be accomplished even i n  very low v i s i b i l i t y  conditions. 

To achieve th is  objective, better a i rcraf t  control i s  required to 
consistently land a t  a more precise point on the runway. After touch- 
down, the a i r c ra f t  must quickly exit,  so as to  allow fo r  the safe approach 
and landing of t r a i l i n g  a i rcraf t .  Runway exi ts which w i l l  allow much 
higher ex i t  speeds must be designed fo r  optimum operations, considering 
also safety, t i r e  wear, and passenger comfort. 



The TCV Program i s  performing research i n  a number o f  areas i n  an 
attempt t o  solve these problems. New autoland control laws which include 
the f la re  and improved auto thro t t le  action, w i th  and without d i r ec t  l i f t  
control, are being developed t o  cope wi th shear and the e f fec ts  of 
ground winds i n  improving the precision o f  touchdown. 

Coupled wi th t h i s  a c t i v i t y  i s  the necessity f o r  p i l o t  display 
development t o  allow monitoring o r  control o f  landing r o l l  out decelera- 
t i on  and turnoff. 

An angled e x i t  concept i s  being studied which w i l l  provide informa- 
t i on  on e x i t  speeds, turnof f  design, distance and time fram touchdown t o  
ex i t ,  and other parameters. Control l a m  have been developed for  automa- 
t i c  high speed turnof f  considering a magnetic leader cable for  guidacce. 
Such a system i s  ready f o r  ground test.  A runway tu rno f f  i s  t o  be b u i l t  
a t  the NASA Wallops F l i gh t  Center f o r  f l i g h t  evaluation o f  pert inent 
parameters and control and display concepts. 

COCKPIT DISPLAY OF TRAFFIC INFORHATION (CDTI) - The concept o f  
providing t r a f f i c  information t o  the aircrew through the use o f  advanced 
displays i s  one that  has been explored f o r  a number o f  years. Research 
i n  t h i s  area has been conducted by several groups and there s t i l l  rma ins  
an issue as t o  the ro l e  and appl icat ion o f  the CDTI i n  the fu ture  ATC 
process. 

Potential benefits of the CDTI f a l l  i n t o  the general areas of 
improved capacity, eff iciency, and safety. Proponents o f  the COT1 
believe i t s  appl icat ion i n  the ATC process can improve tenninal area 
capaci t y  by a1 lowing for reduced a i rc ra f t  separation, e f f i c i e n t  mergi ng , 
and general improvement i n  a i r c r a f t  t r a f f i c  control and crew execution. 
Simulation studies addressing these issues are reported i n  (ref. 17). 

I n  addition, a display o f  the t r a f f i c  s i tuat ion can provide t o  the 
aircrew a bet ter  awareness o f  the t r a f f i c  environment i n  order t o  oper- 
ate w i th  an acceptable level  of confidence and o f  safety. By providing 
su f f i c ien t  information, c o l l  is ions may be avoided by providing advanced 
indications o f  t r a f f i c  con f l i c t s  wherein the cont ro l le r  and aircrew can 
make course changes t o  resolve the con f l i c t .  The display may also serve 
as a backup for certa in ATC system fai lures.  

Concerns f o r  the use o f  the CDTI are that  i t  may resu l t  i n  less 
e f f i c i e n t  operations, w i th  the aircrew challenging the a i r  control ler ,  
increasing workload and possibly un i la tera l  act ion resu l t ing i n  less 
control and safety. The ef fect  o f  COT1 usage on the a i r  t r a f f i c  control- 
ler and aircrew operational procedures and workload must be determined 
t o  judge i t s  u t i l i t y  i n  the ATC system. 



One o f  the major issues i s  the ro l e  o f  the COT1 i n  the overal l  ATC 
process. Should i t s  use be passive as i n  a monitor role, where i t s  
appl icat ion i s  t o  provide the aircrew wi th independent information on 
t ra f f ic  for providing assurance and an e r ro r  detection capabi 1 i t y ?  O r ,  
a l ternat ively,  can the CDTI be applied i n  an act ive  role, u t i l i z i n g  the 
t ra f f i c  display t o  control i n - t r a i l  spacing and l a te ra l  separation and 
t o  resolve t r a f f i c  conf l ic ts,  etc? Ultimately, i f  the CDTI i s  a useful 
approach f o r  improving the ATC operations, i t s  appl icat ion may be a 
compromise between th2 two roles described above. The aircrew w i l l  be 
able t o  u t i l i z e  the CDTI t o  execute cer ta in  functions tha t  are best 
control led from the a i r ,  wi th knowledge o f  the control ler ,  who has the 
overal l  ATC responsi b i  1 i ty. 

I n  an attempt t o  answer the above and related questions, the NASA 
Langley Research Center i s  par t ic ipat ing i n  a j o i n t  program wi th  the FAA 
and NASA Ames t o  evaluate the capabi 1 i ties, benefits, and 1 i a b i  1 i t i e s  of 
the CDTI i n  the future ATC environment. Items t o  address are the means 
for providing data o f  su f f i c ien t  accuracy and frequency, the ro l e  of 
aircrew and control lers i n  the ATC process, evaluation o f  performance 
and accuracies t o  determine ef fects on capacity, cont ro l le r  and aircrew 
workload, and effects on safety. 

Excellent previous work has been done i n  t h i s  area, as re f lec ted i n  
a number of reports ( re f .  17 and 18). The approach being taken i n  t h i s  
j o i n t  e f for t  i s  t o  use the previous research e f f o r t  as a base and t o  
pursue a rigorous program t o  explore the concept o f  CDTI i n  various 
r o l e s  i n  the future ATC system, culminating i n  a series of f l i g h t  tests 
to ver i fy  the results. 

The NASA Langley Research Center wi th i t s  unique simulation and 
advanced a i r c r a f t  (TCV 0-737) capabi l i ty .  w i  11 par t i cu la r l y  address the 
operational aspects o f  the CDTI i n  the terminal area. CDTI w i l l  be 
evaluated i n  a t o t a l  system concept, considering CTOL a i r c r a f t  of varying 
capabi 1 i ty, using the advanced systems described ear l  i e r  i n  t h i s  paper. 
Both simulation and f l i g h t  programs on the addit ion o f  t r a f f i c  t o  the 
present Electronic Horizontal Situation (EHSI) map display are being 
pursued, wi th the f u l l  range o f  display and control capabi l i ty  avai lable 
on the TCV a i rc ra f t .  

One possible appl icat ion o f  the t r a f f i c  t o  the EHSI  map i s  i l l u s -  
trated i n  f igure 42. Ownship a i r c r a f t  (B-737) i s  shown i n  the middle of 
the screen with pert inent t r a f f i c  i n  the approach shown wi th in  10 n. 
m i .  qf ownship. This figure includes waypoints, te r ra in  symbology, 
f l i gh t  plan, a i r c r a f t  ident i f ica t ion,  speed, a l t i t ude  and other symbols. 
Several c?tions, including predict ive vectors f o r  a l l  a i r c ra f t ,  are 



being pursued t s  enhance d isp lay symbology and format t o  de f ine  an 
e f f e c t i v e  display. I n  t h i s  scenario ownship i s  landing a f t e r  a DC-9 and 
i s  being follolde+ i n  order by a 8-727 and a 8-727s. The pos i t i on  o f  
ownship r e l a t i v e  t o  the time box indicates t h a t  ownship i s  proceeding on 
schedul e . 

NASA and F4A 3re developing t e s t  scenarios t o  address the  various 
ro les  and appl .cat ion o f  CDTI  i n  projected ATC environments t o  the year 
2000. F l i g h t  t es t s  w i th  the TCV a i r c r a f t  are planned a t  the NASP Wdllops 
F l  i g h t  Center IWFC) and FAA National Aviat ion Faci 1 i t i e s  Experimental 
Center (NAFEC) . 

CONCLUDING REMARKS 

1 Accurate 4-D f l i g h t s  over long distance f o r  cont ro l  o f  a r r i v a l  
times are read i l y  feasible. Accurate cont ro l  o f  threshold 
a r r i v a l  times can resui t i n  large increases i n  capacity, 
p a r t i c u l a r l y  if longi tudinal  spacing of a i r c r a f t  can be 
reduced. 

2. Instrumentation f o r  4-D f ue l  e f f i c i e n t  descents i s  feasible, 
simulations have been performed, and i t  i s  planned t o  explore 
i t s  use i n  a terminal area environment soon, working w i th  FAA 
a i r  t r a f f i c  personnel. 

3. The TRSB MLS provides very precise -uidance t h a t  an automatic 
system can fo l l ow  a c c ~ r a t e l y  f o r  c ; x e - i n  curved paths, approach- 
i ng  VMC operational capab i l i t y ,  through landing and r o l l  out.  
Through use o f  advanced e lec t ron ic  displays the p i l o t ,  using 
CWS modes, can also f l y  equivalent curved paths manually w i t h  
overshoots o f  50 m or  less, generally, dur ing alinement w i t h  
the runway as close as one mile, even w i t h  very l i t t l e  p rac t ice .  
The paths can save time and airspace on a r r i v a l ,  as wel l  as 
provide merge capabi 1 i t y  from several d i rec t ions .  Because of 
the reduced poss ib i l  i ty a f  s ign i f i can t  overshoot, more c lose ly  
spaced runways f o r  simul taneous approaches i n  I M C  seem feas i  b l  e. 

4. A1 l e v i a t i o n  o f  noise impact on the ground through use o f  
avoidance paths i s  feas ib le  and has been we l l  demonstrated. 

5. I n  order t o  take advantage o f  improved d isp lays the cont ro ls  
and displays must be ccns; x e d  together i n  design as a s ing le  
system t o  assure quick and precise correct ions and maneuvers. 



6 .  CRT displays i n  combination w i t h  appropriate sensors f o r  
prov id ing advanced information enable the crew t o  navigate and 
cont ro l  the a i r c r a f t  manually w i th  prec is ion and sa fe ty  i n  4-0 
f l i g h t  i n  l i e u  o f  automatic contro l  o r  i n  any combination of 
autu.nitiic and manual contro l .  The displays a lso  provide 
redundancy f o r  the automatic modes, permit p i  l o ted  contingency 
:?tion, and permit i ~ s t a n t  response t o  ATC d i rec t i ves  without 
reprograming the f l  i g h t  computers. 

Display o f  per t inent  t r a f f i c  on the navigat ion displays, 
p a r t i c u l a r l y  i n  the terminal area, would seem t o  be very 
important for crew assurance, a t  least ,  i n  c lose ly  spaced 
t r a f f i c ,  even i n  v isua l  condit ions. With add i t iona l  d isp lay  
enhancement i t  may prove feasible f o r  the crew t o  es tab l ish  
and m i  i n t a i n  i t s  own separation, o r  t o  take th rea t  avoidance 
ac t ion  when required. Ear ly  f l  i g h t  experiments w i t h  these 
concepts are planned. 

8. Dis t r ibu ted  contro l  i s  a v iab le  concept f o r  the future,  par t i cu-  
l a r l y  w i th  advanced displays f o r  the p i l o t ,  and has been 
i 1 lus t ra ted  during TRSB llLS demonstrations i n  Buenos Aires, 
New York and Montreal. 

9. I n  retrospect, p i l o t s  found curved approach paths t o  runways 
both acceptable and comfortable (as f o r  VFR), and passengers 
of fered no adverse comments (700 passengers) as long as the 
maneuver t o  cor rec t  the t r a n s i t i o n  e r r o r  form RNAV t o  MLS 
guidance i s  moderate. 

10. It cannot be over emphasized tha t  the TCV Program, as wel l  as 
some other NASA programs, must work hand-in-hand w i t h  FAA t o  
accelerate the appl icat ion,  exp lo i t a t i on  and i n teg ra t i on  o f  
promising research resu l t s  i n t o  the a i r  t r a f f i c  system toward 
needed major improvement;. This appl i e s  t o  research on-going 
i n  navigation, guidance, communications and airborne systems, 
as we1 1 as operating techniques and procedures. 
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Figure 7 .  - NASA TCV B-737 Research A i r c r a f t  
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Figure 11. - EADI Disp lay  S.vmbolog) 

Figure 12. - E H S I  D isp lay  Symbology 



Figure 13. - TRSB Microwave Landing System Scanning Beams 
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Figure 17. - S-Turn Aziuth Capture ( W E C )  
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Figure 21. - Approach Pathway to  Runway 04 a t  
NAFEC (with offset) 
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from Offset w i t h  Baseline Display 
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Figure 27. - STAR ABE04, Aeroparque Jorge Newbery 

Figure 28. - STAR ABE05, Aeroparque Jorge Newbery 



Figure 29. - Approach Paths a t  Buenos Aires 
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Figure 35. - Vert ical  Error f o r  Typical Canarsie 
Approach, F l i g h t  205 Run 8R2 
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Figure 42. - T r a f f i c  D isp lay on EHSI 
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