1,159 research outputs found
Scattering by impurity-induced order parameter ``holes'' in d-wave superconductors
Nonmagnetic impurities in d-wave superconductors cause strong local
suppressions of the order parameter. We investigate the observable effects of
the scatterigng off such suppressions in bulk samples by treating the order
parameter "hole" as a pointlike off-diagonal scatterer treated within a
self-consistent t-matrix approximation. Strong scattering potentials lead to a
finite-energy spectral feature in the d-wave "impurity band", the observable
effects of which include enhanced low-temperature microwave power absorption
and a stronger sensitivity of the London penetration depth to disorder than
found previously in simpler ``dirty'' d-wave models.Comment: 5 pp. Revtex including 4 postscript figures, submitted to Phys. Rev.
Ultrasound attenuation in gap-anisotropic systems
Transverse ultrasound attenuation provides a weakly-coupled probe of momentum
current correlations in electronic systems. We develop a simple theory for the
interpretation of transverse ultrasound attenuation coefficients in systems
with nodal gap anisotropy. Applying this theory we show how ultrasound can
delineate between extended-s and d-wave scenarios for the cuprate
superconductors.Comment: Uuencode file: 4 pages (Revtex), 3 figures. Some references adde
Super-conservative interpretation of muon g-2 results applied to supersymmetry
The recent developments in theory and experiment related to the anomalous
magnetic moment of the muon are applied to supersymmetry. We follow a very
cautious course, demanding that the supersymmetric contributions fit within
five standard deviations of the difference between experiment and the standard
model prediction. Arbitrarily small supersymmetric contributions are then
allowed, so no upper bounds on superpartner masses result. Nevertheless,
non-trivial exclusions are found. We characterize the substantial region of
parameter space ruled out by this analysis that has not been probed by any
previous experiment. We also discuss some implications of the results for
forthcoming collider experiments.Comment: 10 pages, latex, 3 fig
Hopf algebras and Markov chains: Two examples and a theory
The operation of squaring (coproduct followed by product) in a combinatorial
Hopf algebra is shown to induce a Markov chain in natural bases. Chains
constructed in this way include widely studied methods of card shuffling, a
natural "rock-breaking" process, and Markov chains on simplicial complexes.
Many of these chains can be explictly diagonalized using the primitive elements
of the algebra and the combinatorics of the free Lie algebra. For card
shuffling, this gives an explicit description of the eigenvectors. For
rock-breaking, an explicit description of the quasi-stationary distribution and
sharp rates to absorption follow.Comment: 51 pages, 17 figures. (Typographical errors corrected. Further fixes
will only appear on the version on Amy Pang's website, the arXiv version will
not be updated.
Shear-banding in a lyotropic lamellar phase, Part 2: Temporal fluctuations
We analyze the temporal fluctuations of the flow field associated to a
shear-induced transition in a lyotropic lamellar phase: the layering transition
of the onion texture. In the first part of this work [Salmon et al., submitted
to Phys. Rev. E], we have evidenced banded flows at the onset of this
shear-induced transition which are well accounted for by the classical picture
of shear-banding. In the present paper, we focus on the temporal fluctuations
of the flow field recorded in the coexistence domain. These striking dynamics
are very slow (100--1000s) and cannot be due to external mechanical noise.
Using velocimetry coupled to structural measurements, we show that these
fluctuations are due to a motion of the interface separating the two
differently sheared bands. Such a motion seems to be governed by the
fluctuations of , the local stress at the interface between the
two bands. Our results thus provide more evidence for the relevance of the
classical mechanical approach of shear-banding even if the mechanism leading to
the fluctuations of remains unclear
On the 3-particle scattering continuum in quasi one dimensional integer spin Heisenberg magnets
We analyse the three-particle scattering continuum in quasi one dimensional
integer spin Heisenberg antiferromagnets within a low-energy effective field
theory framework. We exactly determine the zero temperature dynamical structure
factor in the O(3) nonlinear sigma model and in Tsvelik's Majorana fermion
theory. We study the effects of interchain coupling in a Random Phase
Approximation. We discuss the application of our results to recent
neutron-scattering experiments on the Haldane-gap material .Comment: 8 pages of revtex, 5 figures, small changes, to appear in PR
Distinguishing d-wave from highly anisotropic s-wave superconductors
Systematic impurity doping in the Cu-O plane of the hole-doped cuprate
superconductors may allow one to decide between unconvention al ("d-wave") and
anisotropic conventional ("s-wave") states as possible candidates for the order
parameter in these materials. We show that potential scattering of any strength
always increases the gap minima of such s-wave states, leading to activated
behavior in temperature with characteristic impurity concentration dependence
in observable quantities such as the penetration depth. A magnetic component to
the scattering may destroy the energy gap and give rise to conventional gapless
behavior, or lead to a nonmonotonic dependence of the gap on impurity
concentration. We discuss how experiments constrain this analysis.Comment: 5 page
Supercoherent States, Super K\"ahler Geometry and Geometric Quantization
Generalized coherent states provide a means of connecting square integrable
representations of a semi-simple Lie group with the symplectic geometry of some
of its homogeneous spaces. In the first part of the present work this point of
view is extended to the supersymmetric context, through the study of the
OSp(2/2) coherent states. These are explicitly constructed starting from the
known abstract typical and atypical representations of osp(2/2). Their
underlying geometries turn out to be those of supersymplectic OSp(2/2)
homogeneous spaces. Moment maps identifying the latter with coadjoint orbits of
OSp(2/2) are exhibited via Berezin's symbols. When considered within
Rothstein's general paradigm, these results lead to a natural general
definition of a super K\"ahler supermanifold, the supergeometry of which is
determined in terms of the usual geometry of holomorphic Hermitian vector
bundles over K\"ahler manifolds. In particular, the supergeometry of the above
orbits is interpreted in terms of the geometry of Einstein-Hermitian vector
bundles. In the second part, an extension of the full geometric quantization
procedure is applied to the same coadjoint orbits. Thanks to the super K\"ahler
character of the latter, this procedure leads to explicit super unitary
irreducible representations of OSp(2/2) in super Hilbert spaces of
superholomorphic sections of prequantum bundles of the Kostant type. This work
lays the foundations of a program aimed at classifying Lie supergroups'
coadjoint orbits and their associated irreducible representations, ultimately
leading to harmonic superanalysis. For this purpose a set of consistent
conventions is exhibited.Comment: 53 pages, AMS-LaTeX (or LaTeX+AMSfonts
Search for the radiative decay in the SND experiment at VEPP-2M
The decay was investigated by the SND detector
at VEPP-2M collider in the reaction .
Here we present the results and some details of this study. We report an upper
limit (90% c.l.) as our
final result. Our upper limit does not contradict the earlier measurement by
GAMS spectrometer. To facilitate future studies a rather detailed review of the
problem is also given.Comment: 24 pages, 6 figures, LaTex. To be published in Nucl. Phys.
The manipulation of massive ro-vibronic superpositions using time-frequency-resolved coherent anti-Stokes Raman scattering (TFRCARS): from quantum control to quantum computing
Molecular ro-vibronic coherences, joint energy-time distributions of quantum
amplitudes, are selectively prepared, manipulated, and imaged in
Time-Frequency-Resolved Coherent Anti-Stokes Raman Scattering (TFRCARS)
measurements using femtosecond laser pulses. The studies are implemented in
iodine vapor, with its thermally occupied statistical ro-vibrational density
serving as initial state. The evolution of the massive ro-vibronic
superpositions, consisting of 1000 eigenstates, is followed through
two-dimensional images. The first- and second-order coherences are captured
using time-integrated frequency-resolved CARS, while the third-order coherence
is captured using time-gated frequency-resolved CARS. The Fourier filtering
provided by time integrated detection projects out single ro-vibronic
transitions, while time-gated detection allows the projection of arbitrary
ro-vibronic superpositions from the coherent third-order polarization. Beside
the control and imaging of chemistry, the controlled manipulation of massive
quantum coherences suggests the possibility of quantum computing. We argue that
the universal logic gates necessary for arbitrary quantum computing - all
single qubit operations and the two-qubit controlled-NOT (CNOT) gate - are
available in time resolved four-wave mixing in a molecule. The molecular
rotational manifold is naturally "wired" for carrying out all single qubit
operations efficiently, and in parallel. We identify vibronic coherences as one
example of a naturally available two-qubit CNOT gate, wherein the vibrational
qubit controls the switching of the targeted electronic qubit.Comment: PDF format. 59 pages, including 22 figures. To appear in Chemical
Physic
- …