1,838 research outputs found

    Comparison of Temperature-Dependent Hadronic Current Correlation Functions Calculated in Lattice Simulations of QCD and with a Chiral Lagrangian Model

    Get PDF
    The Euclidean-time hadronic current correlation functions, GP(τ,T)G_P(\tau, T) and GV(τ,T)G_V(\tau, T), of pseudoscalar and vector currents have recently been calculated in lattice simulations of QCD and have been used to obtain the corresponding spectral functions. We have used the Nambu-Jona-Lasinio (NJL) model to calculate such spectral functions, as well as the Euclidean-time correlators, and have made a comparison to the lattice results for the correlators. We find evidence for the type of temperature dependence of the NJL coupling parameters that we have used in previous studies of the mesonic confinement-deconfinement transition. We also see that the spectral functions obtained when using the maximum-entropy-method (MEM) and the lattice data differ from the spectral functions that we calculate in our chiral model. However, our results for the Euclidean-time correlators are in general agreement with the lattice results, with better agreement when our temperature-dependent coupling parameters are used than when temperature-independent parameters are used for the NJL model. We also discuss some additional evidence for the utility of temperature-dependent coupling parameters for the NJL model. For example, if the constituent quark mass at T=0 is 352MeV352 {MeV} in the chiral limit, the transition temperature is Tc=208MeVT_c=208 {MeV} for the NJL model with a standard momentum cutoff parameter. (If a Gaussian momentum cutoff is used, we find Tc=225MeVT_c=225 {MeV} in the chiral limit, with m=368MeVm=368 {MeV} at T=0.) The introduction of a weak temperature dependence for the coupling constant will move the value of TcT_c into the range 150-170 MeV, which is more in accord with what is found in lattice simulations of QCD with dynamical quarks

    Azimuthal Correlations in the Target Fragmentation Region of High Energy Nuclear Collisions

    Get PDF
    Results on the target mass dependence of proton and pion pseudorapidity distributions and of their azimuthal correlations in the target rapidity range 1.73η1.32-1.73 \le \eta \le 1.32 are presented. The data have been taken with the Plastic-Ball detector set-up for 4.9 GeV p + Au collisions at the Berkeley BEVALAC and for 200 AA\cdotGeV/cc p-, O-, and S-induced reactions on different nuclei at the CERN-SPS. The yield of protons at backward rapidities is found to be proportional to the target mass. Although protons show a typical ``back-to-back'' correlations, a ``side-by-side'' correlation is observed for positive pions, which increases both with target mass and with impact parameter of a collision. The data can consistently be described by assuming strong rescattering phenomena including pion absorption effects in the entire excited target nucleus.Comment: 7 pages, figures included, complete postscript available at ftp://qgp.uni-muenster.de/pub/paper/azi-correlations.ps submitted to Phys. Lett.

    Wear Minimization for Cuckoo Hashing: How Not to Throw a Lot of Eggs into One Basket

    Full text link
    We study wear-leveling techniques for cuckoo hashing, showing that it is possible to achieve a memory wear bound of loglogn+O(1)\log\log n+O(1) after the insertion of nn items into a table of size CnCn for a suitable constant CC using cuckoo hashing. Moreover, we study our cuckoo hashing method empirically, showing that it significantly improves on the memory wear performance for classic cuckoo hashing and linear probing in practice.Comment: 13 pages, 1 table, 7 figures; to appear at the 13th Symposium on Experimental Algorithms (SEA 2014

    1/N_c- expansion of the quark condensate at finite temperature

    Get PDF
    Previously the quark and meson properties in a many quark system at finite temperature have been studied within effective QCD approaches in the Hartree approximation. In the present paper we consider the influence of the mesonic correlations on the quark self-energy and on the quark propagator within a systematic 1/Nc1/N_c- expansion. Using a general separable ansatz for the nonlocal interaction, we derive a selfconsistent equation for the 1/Nc1/N_c correction to the quark propagator. For a separable model with cut-off formfactor, we obtain a decrease of the condensate of the order of 20\% at zero temperature. A lowering the critical temperature for the onset of the chiral restoration transition due to the inclusion of mesonic correlations is obtained what seems to be closer to the results from lattice calculations.Comment: 19 pages, REVTeX, 5 figure

    The effect of underwater sounds on shark behaviour

    Get PDF
    The effect of sound on the behaviour of sharks has not been investigated since the 1970s. Sound is, however, an important sensory stimulus underwater, as it can spread in all directions quickly and propagate further than any other sensory cue. We used a baited underwater camera rig to record the behavioural responses of eight species of sharks (seven reef and coastal shark species and the white shark, Carcharodon carcharias) to the playback of two distinct sound stimuli in the wild: an orca call sequence and an artificially generated sound. When sounds were playing, reef and coastal sharks were less numerous in the area, were responsible for fewer interactions with the baited test rigs, and displayed less ‘inquisitive’ behaviour, compared to during silent control trials. White sharks spent less time around the baited camera rig when the artificial sound was presented, but showed no significant difference in behaviour in response to orca calls. The use of the presented acoustic stimuli alone is not an effective deterrent for C. carcharias. The behavioural response of reef sharks to sound raises concern about the effects of anthropogenic noise on these taxa

    Dynamic Front Transitions and Spiral-Vortex Nucleation

    Full text link
    This is a study of front dynamics in reaction diffusion systems near Nonequilibrium Ising-Bloch bifurcations. We find that the relation between front velocity and perturbative factors, such as external fields and curvature, is typically multivalued. This unusual form allows small perturbations to induce dynamic transitions between counter-propagating fronts and nucleate spiral vortices. We use these findings to propose explanations for a few numerical and experimental observations including spiral breakup driven by advective fields, and spot splitting

    A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph

    Full text link
    A wavelength calibration system based on a laser frequency comb (LFC) was developed in a co-operation between the Kiepenheuer-Institut f\"ur Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut f\"ur Quantenoptik, Garching, Germany for permanent installation at the German Vacuum Tower Telescope (VTT) on Tenerife, Canary Islands. The system was installed successfully in October 2011. By simultaneously recording the spectra from the Sun and the LFC, for each exposure a calibration curve can be derived from the known frequencies of the comb modes that is suitable for absolute calibration at the meters per second level. We briefly summarize some topics in solar physics that benefit from absolute spectroscopy and point out the advantages of LFC compared to traditional calibration techniques. We also sketch the basic setup of the VTT calibration system and its integration with the existing echelle spectrograph.Comment: 9 pages, 2 figures; Solar Physics 277 (2012

    Spin Transfer from a Ferromagnet into a Semiconductor through an Oxide barrier

    Full text link
    We present results on the magnetoresistance of the system Ni/Al203/n-doped Si/Al2O3/Ni in fabricated nanostructures. The results at temperature of 14K reveal a 75% magnetoresistance that decreases in value up to approximately 30K where the effect disappears. We observe minimum resistance in the antiparallel configurations of the source and drain of Ni. As a possibility, it seems to indicate the existence of a magnetic state at the Si/oxide interface. The average spin diffusion length obtained is of 650 nm approximately. Results are compared to the window of resistances that seems to exist between the tunnel barrier resistance and two threshold resistances but the spin transfer seems to work in the range and outside the two thresholds

    A kinetic approach to eta' production from a CP-odd phase

    Full text link
    The production of (eta,eta')- mesons during the decay of a CP-odd phase is studied within an evolution operator approach. We derive a quantum kinetic equation starting from the Witten-DiVecchia-Veneziano Lagrangian for pseudoscalar mesons containing a U_A(1) symmetry breaking term. The non-linear vacuum mean field for the flavour singlet pseudoscalar meson is treated as a classical, self-interacting background field with fluctuations assumed to be small. The numerical solution provides the time evolution of momentum distribution function of produced eta'- mesons after a quench at the deconfinement phase transition. We show that the time evolution of the momentum distribution of the produced mesons depend strongly on the shape of the effective potential at the end of the quench, exhibiting either parametric or tachyonic resonances. Quantum statistical effects are essential and lead to a pronounced Bose enhancement of the low momentum states.Comment: 10 pages, latex, epsfig, 6 figure

    Spin Diode Based on Fe/MgO Double Tunnel Junction

    Full text link
    We demonstrate a spin diode consisting of a semiconductor free nano-scale Fe/MgO-based double tunnel junction. The device exhibits a near perfect spin-valve effect combined with a strong diode effect. The mechanism consistent with our data is resonant tunneling through discrete states in the middle ferromagnetic layer sandwiched by tunnel barriers of different spin-dependent transparency. The observed magneto-resistance is record high, ~4000%, essentially making the structure an on/off spin-switch. This, combined with the strong diode effect, ~100, offers a new device that should be promising for such technologies as magnetic random access memory and re-programmable logic.Comment: 14 page
    corecore