249 research outputs found

    Evanescent straight tapered-fiber coupling of ultra-high Q optomechanical micro-resonators in a low-vibration helium-4 exchange-gas cryostat

    Full text link
    We developed an apparatus to couple a 50-micrometer diameter whispering-gallery silica microtoroidal resonator in a helium-4 cryostat using a straight optical tapered-fiber at 1550nm wavelength. On a top-loading probe specifically adapted for increased mechanical stability, we use a specifically-developed "cryotaper" to optically probe the cavity, allowing thus to record the calibrated mechanical spectrum of the optomechanical system at low temperatures. We then demonstrate excellent thermalization of a 63-MHz mechanical mode of a toroidal resonator down to the cryostat's base temperature of 1.65K, thereby proving the viability of the cryogenic refrigeration via heat conduction through static low-pressure exchange gas. In the context of optomechanics, we therefore provide a versatile and powerful tool with state-of-the-art performances in optical coupling efficiency, mechanical stability and cryogenic cooling.Comment: 8 pages, 6 figure

    Cavity optomechanics with ultra-high Q crystalline micro-resonators

    Full text link
    We present the first observation of optomechanical coupling in ultra-high Q crystalline whispering-gallery-mode (WGM) resonators. The high purity of the crystalline material enables optical quality factors in excess of 10^{10} and finesse exceeding 10^{6}. Simultaneously, mechanical quality factors greater than 10^{5} are obtained, still limited by clamping losses. Compared to previously demonstrated cylindrical resonators, the effective mass of the mechanical modes can be dramatically reduced by the fabrication of CaF2 microdisc resonators. Optical displacement monitoring at the 10^{-18} m/sqrt{Hz}-level reveals mechanical radial modes at frequencies up to 20 MHz, corresponding to unprecedented sideband factors (>100). Together with the weak intrinsic mechanical damping in crystalline materials, such high sindeband factors render crystalline WGM micro-resonators promising for backaction evading measurements, resolved sideband cooling or optomechanical normal mode splitting. Moreover, these resonators can operate in a regime where optomechanical Brillouin lasing can become accessible

    On optical forces in spherical whispering gallery mode resonators

    Full text link
    In this paper we discuss the force exerted by the field of an optical cavity on a polarizable dipole. We show that the modification of the cavity modes due to interaction with the dipole significantly alters the properties of the force. In particular, all components of the force are found to be non-conservative, and cannot, therefore, be derived from a potential energy. We also suggest a simple generalization of the standard formulas for the optical force on the dipole, which reproduces the results of calculations based on the Maxwell stress tensor.Comment: To pe published in Optics Express Focus Issue: "Collective phenomena in photonic, plasmonic and hybrid structures

    Optical frequency comb generation from a monolithic microresonator

    Full text link
    Optical frequency combs provide equidistant frequency markers in the infrared, visible and ultra-violet and can link an unknown optical frequency to a radio or microwave frequency reference. Since their inception frequency combs have triggered major advances in optical frequency metrology and precision measurements and in applications such as broadband laser-based gas sensing8 and molecular fingerprinting. Early work generated frequency combs by intra-cavity phase modulation while to date frequency combs are generated utilizing the comb-like mode structure of mode-locked lasers, whose repetition rate and carrier envelope phase can be stabilized. Here, we report an entirely novel approach in which equally spaced frequency markers are generated from a continuous wave (CW) pump laser of a known frequency interacting with the modes of a monolithic high-Q microresonator13 via the Kerr nonlinearity. The intrinsically broadband nature of parametric gain enables the generation of discrete comb modes over a 500 nm wide span (ca. 70 THz) around 1550 nm without relying on any external spectral broadening. Optical-heterodyne-based measurements reveal that cascaded parametric interactions give rise to an optical frequency comb, overcoming passive cavity dispersion. The uniformity of the mode spacing has been verified to within a relative experimental precision of 7.3*10(-18).Comment: Manuscript and Supplementary Informatio

    Optomechanically induced transparency

    Full text link
    Coherent interaction of laser radiation with multilevel atoms and molecules can lead to quantum interference in the electronic excitation pathways. A prominent example observed in atomic three-level-systems is the phenomenon of electromagnetically induced transparency (EIT), in which a control laser induces a narrow spectral transparency window for a weak probe laser beam. The concomitant rapid variation of the refractive index in this spectral window can give rise to dramatic reduction of the group velocity of a propagating pulse of probe light. Dynamic control of EIT via the control laser enables even a complete stop, that is, storage, of probe light pulses in the atomic medium. Here, we demonstrate optomechanically induced transparency (OMIT)--formally equivalent to EIT--in a cavity optomechanical system operating in the resolved sideband regime. A control laser tuned to the lower motional sideband of the cavity resonance induces a dipole-like interaction of optical and mechanical degrees of freedom. Under these conditions, the destructive interference of excitation pathways for an intracavity probe field gives rise to a window of transparency when a two-photon resonance condition is met. As a salient feature of EIT, the power of the control laser determines the width and depth of the probe transparency window. OMIT could therefore provide a new approach for delaying, slowing and storing light pulses in long-lived mechanical excitations of optomechanical systems, whose optical and mechanical properties can be tailored in almost arbitrary ways in the micro- and nano-optomechanical platforms developed to date

    Type IV Duane Syndrome

    Get PDF
    Purpose To identify cases of synergistic divergence whose characteristics suggest that this entity is a form of Duane syndrome. Methods The records of all patients with a Duane syndrome diagnosis, including standardized eye position photographs, from the E-Consultation program of Cybersight, Orbis International were analyzed. Results A total of 350 Duane syndrome cases were identified. Of these, 19 (5%) had features consistent with synergistic divergence, or type 4 Duane syndrome. Of the 19, 16 (84%) were male, 15 (79%) had palpebral fissure narrowing, all had anomalous head posture, and 18 (95%) were exotropic. Only 9 (47%) patients were reported to have undergone surgery. Conclusions Synergistic divergence is a rare entity with features similar to those of Duane syndrome. We suggest that this entity be classified as type 4 Duane syndrome, because it has unique findings and an innervation pattern that differs from the other 3 recognized types

    Cooling of a micro-mechanical oscillator using radiation pressure induced dynamical back-action

    Get PDF
    Cooling of a 58 MHz micro-mechanical resonator from room temperature to 11 K is demonstrated using cavity enhanced radiation pressure. Detuned pumping of an optical resonance allows enhancement of the blue shifted motional sideband (caused by the oscillator's Brownian motion) with respect to the red-shifted sideband leading to cooling of the mechanical oscillator mode. The reported cooling mechanism is a manifestation of the effect of radiation pressure induced dynamical backaction. These results constitute an important step towards achieving ground state cooling of a mechanical oscillator.Comment: accepted for publication (Phys. Rev. Lett.
    • …
    corecore