3,416 research outputs found

    Representations of celestial coordinates in FITS

    Full text link
    In Paper I, Greisen & Calabretta (2002) describe a generalized method for assigning physical coordinates to FITS image pixels. This paper implements this method for all spherical map projections likely to be of interest in astronomy. The new methods encompass existing informal FITS spherical coordinate conventions and translations from them are described. Detailed examples of header interpretation and construction are given.Comment: Consequent to Paper I: "Representations of world coordinates in FITS". 45 pages, 38 figures, 13 tables, aa macros v5.2 (2002/Jun). Both papers submitted to Astronomy & Astrophysics (2002/07/19). Replaced to try to get figure and table placement right (no textual changes

    HI observations of nearby galaxies I. The first list of the Karachentsev catalog

    Full text link
    We present HI observations of the galaxies in the first list of the Karachentsev catalog of previously unknown nearby dwarf galaxies (Karachentseva & Karachentsev 1998). This survey covers all known nearby galaxy groups within the Local Volume (i.e. within 10 Mpc) and their environment, that is about 25% of the total sky. A total of 257 galaxies have been observed with a detection rate of 60%. We searched a frequency band corresponding to heliocentric radial velocities from -470 km/s to about +4000 km/s. Non-detections are either due to limited coverage in radial velocity, confusion with Local HI (mainly in the velocity range -140 km/s to +20 km/s, or lack of sensitivity for very weak emission. 25% of the detected galaxies are located within the Local Volume. Those galaxies are dwarf galaxies judged by their optical linear diameter (1.4 +/- 0.2 kpc on the average), their mean total HI mass (4.6 E7 solar masses), and their observed linewidths (39 km/s).Comment: 22 pages, 9 ps figures, A&AS, in pres

    A photometricity and extinction monitor at the Apache Point Observatory

    Full text link
    An unsupervised software ``robot'' that automatically and robustly reduces and analyzes CCD observations of photometric standard stars is described. The robot measures extinction coefficients and other photometric parameters in real time and, more carefully, on the next day. It also reduces and analyzes data from an all-sky 10μm10 \mu m camera to detect clouds; photometric data taken during cloudy periods are automatically rejected. The robot reports its findings back to observers and data analysts via the World-Wide Web. It can be used to assess photometricity, and to build data on site conditions. The robot's automated and uniform site monitoring represents a minimum standard for any observing site with queue scheduling, a public data archive, or likely participation in any future National Virtual Observatory.Comment: accepted for publication in A

    A Deep ROSAT HRI Observation of NGC 1313

    Full text link
    We describe a series of observations of NGC 1313 using the ROSAT HRI with a combined exposure time of 183.5 ksec. The observations span an interval between 1992 and 1998; the purpose of observations since 1994 was to monitor the X-ray flux of SN1978K, one of several luminous sources in the galaxy. No diffuse emission is detected in the galaxy to a level of ~1-2x10^37 ergs/s/arcmin^-2. A total of eight sources are detected in the summed image within the D_25 diameter of the galaxy. The luminosities of five of the eight range from \~6x10^37 to ~6x10^38 erg/s; these sources are most likely accreting X-ray binaries, similar to sources obseved in M31 and M33. The remaining three sources all emit above 10^39 erg/s. We present light curves of the five brightest sources. Variability is detected at the 99.9% level from four of these. We identify one of the sources as an NGC 1313 counterpart of a Galactic X-ray source. The light curve, though crudely sampled, most closely resembles that of a Galactic black hole candidate such as GX339-4, but with considerably higher peak X-ray luminosity. An additional seven sources lie outside of the D_25 diameter and are either foreground stars or background AGN.Comment: 18 pages, 9 figures; accepted AJ, scheduled for November 200

    Chandra Multiwavelength Project: Normal Galaxies at Intermediate Redshift

    Full text link
    (abridged) We have investigated 136 Chandra extragalactic sources without broad optical emission lines, including 93 galaxies with narrow emission lines (NELG) and 43 with only absorption lines (ALG). Based on fx/fo, Lx, X-ray spectral hardness and optical emission line diagnostics, we have conservatively classified 36 normal galaxies (20 spirals and 16 ellipticals) and 71 AGNs. We found no statistically significant evolution in Lx/LB, within the limited z range. We have built log(N)-log(S), after correcting for completeness based on a series of simulations. The best-fit slope is -1.5 for both S and B energy bands, which is considerably steeper than that of the AGN-dominated cosmic background sources, but slightly flatter than the previous estimate, indicating normal galaxies will not exceed the AGN population until fx ~ 2 x 10-18 erg s-1 cm-2 (a factor of ~5 lower than the previous estimate). A group of NELGs appear to be heavily obscured in X-rays, i.e., a typical type 2 AGN. After correcting for intrinsic absorption, their X-ray luminosities could be Lx > 10^44 erg s-1, making them type 2 quasar candidates. While most X-ray luminous ALGs (XBONG - X-ray bright, optically normal galaxy candidates) do not appear to be significantly absorbed, we found two heavily obscured objects, which could be as luminous as an unobscured broad-line quasar. Among 43 ALGs, we found two E+A galaxy candidates with strong Balmer absorption lines, but no [OII] line. The X-ray spectra of both galaxies are soft and one of them has a nearby close companion galaxy, supporting the merger/interaction scenario rather than the dusty starburst hypothesis.Comment: 31 pages, 9 figures, accepted for publication in ApJ (20 June 2006, v644), replaced with minor correction

    Physical Properties of the X-ray Luminous SN 1978K in NGC 1313 from Multiwavelength Observations

    Get PDF
    We update the light curves from the X-ray, optical, and radio bandpasses which we have assembled over the past decade, and present two observations in the ultraviolet using the Hubble Space Telescope Faint Object Spectrograph. The HRI X-ray light curve is constant within the errors over the entire observation period. This behavior is confirmed in the ASCA GIS data obtained in 1993 and 1995. In the ultraviolet, we detected Ly-alpha, the [Ne IV] 2422/2424 A doublet, the Mg II doublet at 2800 A, and a line at ~3190 A we attribute to He I 3187. Only the Mg II and He I lines are detected at SN1978K's position. The optical light curve is formally constant within the errors, although a slight upward trend may be present. The radio light curve continues its steep decline. The longer time span of our radio observations compared to previous studies shows that SN1978K is in the same class of highly X-ray and radio-luminous supernovae as SN1986J and SN1988Z. The [Ne IV] emission is spatially distant from the location of SN1978K and originates in the pre-shocked matter. The Mg II doublet flux ratio implies the quantity of line optical depth times density of ~10^14 cm^-3 for its emission region. The emission site must lie in the shocked gas.Comment: 32 pages, 13 figs; LaTeX with AASTEXv5; paper accepted, scheduled for AJ, Dec 199

    Complete Treatment of Galaxy Two-Point Statistics: Gravitational Lensing Effects and Redshift-Space Distortions

    Full text link
    We present a coherent theoretical framework for computing gravitational lensing effects and redshift-space distortions in an inhomogeneous universe and investigate their impacts on galaxy two-point statistics. Adopting the linearized FRW metric, we derive the gravitational lensing and the generalized Sachs-Wolfe effects that include the weak lensing distortion, magnification, and time delay effects, and the redshift-space distortion, Sachs-Wolfe, and integrated Sachs-Wolfe effects, respectively. Based on this framework, we first compute their effects on observed source fluctuations, separating them as two physically distinct origins: the volume effect that involves the change of volume and is always present in galaxy two-point statistics, and the source effect that depends on the intrinsic properties of source populations. Then we identify several terms that are ignored in the standard method, and we compute the observed galaxy two-point statistics, an ensemble average of all the combinations of the intrinsic source fluctuations and the additional contributions from the gravitational lensing and the generalized Sachs-Wolfe effects. This unified treatment of galaxy two-point statistics clarifies the relation of the gravitational lensing and the generalized Sachs-Wolfe effects to the metric perturbations and the underlying matter fluctuations. For near future dark energy surveys, we compute additional contributions to the observed galaxy two-point statistics and analyze their impact on the anisotropic structure. Thorough theoretical modeling of galaxy two-point statistics would be not only necessary to analyze precision measurements from upcoming dark energy surveys, but also provide further discriminatory power in understanding the underlying physical mechanisms.Comment: 20 pages, 5 figures, Fig.4 corrected, appendix added, accepted for publication in Physical Review

    What Produced the Ultraluminous Supernova Remnant in NGC 6946?

    Get PDF
    The ultraluminous supernova remnant (SNR) in NGC 6946 is the brightest known SNR in X-rays, ~1000 times brighter than Cas A. To probe the nature of this remnant and its progenitor, we have obtained high-dispersion optical echelle spectra. The echelle spectra detect H-alpha, [N II], and [O III] lines, and resolve these lines into a narrow (FWHM ~20--40 km/s) component from un-shocked material and a broad (FWHM ~250 km/s) component from shocked material. Both narrow and broad components have unusually high [N II]/H-alpha ratios, ~1. Using the echelle observation, archival HST images, and archival ROSAT X-ray observations, we conclude that the SNR was produced by a normal supernova, whose progenitor was a massive star, either a WN star or a luminous blue variable. The high luminosity of the remnant is caused by the supernova ejecta expanding into a dense, nitrogen-rich circumstellar nebula created by the progenitor.Comment: 20 pages, 5 figures. To be published in The Astronomical Journal, March 200

    Identification of the soft X-ray source WGA J1802.1+1804 with a new magnetic cataclysmic variable

    Get PDF
    We have discovered a bright (V~14.5) cataclysmic variable during observations of the soft X-ray sources in the list of Singh et al. The optical source, which is coincident with the X-ray position of WGA J1802.1+1804, shows all the characteristics of a magnetic AM Herculis-type system: circular polarization, He II strength greater than Hβ, multiple line components, and a consistent photometric, polarimetric, spectroscopic, and X-ray period of 113 minutes. The X-ray spectrum shows a dominant soft blackbody (kT=20-45 eV) and a weaker bremsstrahlung component (kT>1 keV), while the circular polarization is relatively low (4% in the red)

    The Araucaria Project. Bright Variable Stars in NGC 6822 from a Wide-Field Imaging Survey

    Full text link
    We have performed a search for variable stars in the dwarf irregular galaxy NGC 6822 using wide-field multi-epoch VI photometry down to a limiting magnitude VV \sim 22. Apart from the Cepheid variables in this galaxy already reported in an earlier paper by Pietrzynski et al. (2004), we have found 1019 "non-periodic" variable stars, 50 periodically variable stars with periods ranging from 0.12 to 66 days and 146 probably periodic variables. Twelve of these stars are eclipsing binaries and fifteen are likely new, low-amplitude Cepheids. Interestingly, seven of these Cepheid candidates have periods longer than 100 days, have very low amplitudes (less than 0.2 mag in II), and are very red. They could be young, massive Cepheids still embedded in dusty envelopes. The other objects span a huge range in colours and represent a mixture of different types of luminous variables. Many of the variables classified as non-periodic in the present study may turn out to be {\it periodic} variables once a much longer time baseline will be available to study them. We provide the catalogue of photometric parameters and show the atlas of light curves for the new variable stars. Our present catalogue is complementary to the one of Baldacci et al. (2005) which has focussed on very short-period and fainter variables in a subfield in NGC 6822.Comment: Accepted for publication in A&
    corecore