20 research outputs found

    Quantitative comparison between in vivo DNA adduct formation from exposure to selected DNA-reactive carcinogens, natural background levels of DNA adduct formation and tumour incidence in rodent bioassays

    Get PDF
    This study aimed at quantitatively comparing the occurrence/formation of DNA adducts with the carcinogenicity induced by a selection of DNA-reactive genotoxic carcinogens. Contrary to previous efforts, we used a very uniform set of data, limited to in vivo rat liver studies in order to investigate whether a correlation can be obtained, using a benchmark dose (BMD) approach. Dose-response data on both carcinogenicity and in vivo DNA adduct formation were available for six compounds, i.e. 2-acetylaminofluorene, aflatoxin B1, methyleugenol, safrole, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline and tamoxifen. BMD10 values for liver carcinogenicity were calculated using the US Environmental Protection Agency BMD software. DNA adduct levels at this dose were extrapolated assuming linearity of the DNA adduct dose response. In addition, the levels of DNA adducts at the BMD10 were compared to available data on endogenous background DNA damage in the target organ. Although for an individual carcinogen the tumour response increases when adduct levels increase, our results demonstrate that when comparing different carcinogens, no quantitative correlation exists between the level of DNA adduct formation and carcinogenicity. These data confirm that the quantity of DNA adducts formed by a DNA-reactive compound is not a carcinogenicity predictor but that other factors such as type of adduct and mutagenic potential may be equally relevant. Moreover, comparison to background DNA damage supports the notion that the mere occurrence of DNA adducts above or below the level of endogenous DNA damage is neither correlated to development of cancer. These data strongly emphasise the need to apply the mode of action framework to understand the contribution of other biological effect markers playing a role in carcinogenicit

    In vivo validation of DNA adduct formation by estragole in rats predicted by physiologically based biodynamic modelling

    Get PDF
    Estragole is a naturally occurring food-borne genotoxic compound found in a variety of food sources, including spices and herbs. This results in human exposure to estragole via the regular diet. The objective of this study was to quantify the dose-dependent estragole-DNA adduct formation in rat liver and the urinary excretion of 1'-hydroxyestragole glucuronide in order to validate our recently developed physiologically based biodynamic (PBBD) model. Groups of male outbred Sprague Dawley rats (n = 10, per group) were administered estragole once by oral gavage at dose levels of 0 (vehicle control), 5, 30, 75, 150, and 300mg estragole/kg bw and sacrificed after 48h. Liver, kidney and lungs were analysed for DNA adducts by LC-MS/MS. Results obtained revealed a dose-dependent increase in DNA adduct formation in the liver. In lungs and kidneys DNA adducts were detected at lower levels than in the liver confirming the occurrence of DNA adducts preferably in the target organ, the liver. The results obtained showed that the PBBD model predictions for both urinary excretion of 1'-hydroxyestragole glucuronide and the guanosine adduct formation in the liver were comparable within less than an order of magnitude to the values actually observed in vivo. The PBBD model was refined using liver zonation to investigate whether its predictive potential could be further improved. The results obtained provide the first data set available on estragole-DNA adduct formation in rats and confirm their occurrence in metabolically active tissues, i.e. liver, lung and kidney, while the significantly higher levels found in liver are in accordance with the liver as the target organ for carcinogenicity. This opens the way towards future modelling of dose-dependent estragole liver DNA adduct formation in huma

    Evaluation of Human Interindividual Variation in Bioactivation of Estragole Using Physiologically Based Biokinetic Modeling

    Get PDF
    The present study investigates interindividual variation in liver levels of the proximate carcinogenic metabolite of estragole, 1′-hydroxyestragole, due to variation in two key metabolic reactions involved in the formation and detoxification of this metabolite, namely 1′-hydroxylation of estragole and oxidation of 1′-hydroxyestragole. Formation of 1′-hydroxyestragole is predominantly catalyzed by P450 1A2, 2A6, and 2E1, and results of the present study support that oxidation of 1′-hydroxyestragole is catalyzed by 17β-hydroxysteroid dehydrogenase type 2 (17β-HSD2). In a first approach, the study defines physiologically based biokinetic (PBBK) models for 14 individual human subjects, revealing a 1.8-fold interindividual variation in the area under the liver concentration-time curve (AUC) for 1′-hydroxyestragole within this group of human subjects. Variation in oxidation of 1′-hydroxyestragole by 17β-HSD2 was shown to result in larger effects than those caused by variation in P450 enzyme activity. In a second approach, a Monte Carlo simulation was performed to evaluate the extent of variation in liver levels of 1′-hydroxyestragole that could occur in the population as a whole. This analysis could be used to derive a chemical-specific adjustment factor (CSAF), which is defined as the 99th percentile divided by the 50th percentile of the predicted distribution of the AUC of 1′-hydroxyestragole in the liver. The CSAF was estimated to range between 1.6 and 4.0, depending on the level of variation that was taken into account for oxidation of 1′-hydroxyestragole. Comparison of the CSAF to the default uncertainty factor of 3.16 for human variability in biokinetics reveals that the default uncertainty factor adequately protects 99% of the populatio

    Use of Physiologically Based Biokinetic (PBBK) Modeling to Study Estragole Bioactivation and Detoxification in Humans as Compared with Male Rats

    Get PDF
    The extent of bioactivation of the herbal constituent estragole to its ultimate carcinogenic metabolite 1′-sulfooxyestragole depends on the relative levels of bioactivation and detoxification pathways. The present study investigated the kinetics of the metabolic reactions of both estragole and its proximate carcinogenic metabolite 1′-hydroxyestragole in humans in incubations with relevant tissue fractions. Based on the kinetic data obtained a physiologically based biokinetic (PBBK) model for estragole in human was defined to predict the relative extent of bioactivation and detoxification at different dose levels of estragole. The outcomes of the model were subsequently compared with those previously predicted by a PBBK model for estragole in male rat to evaluate the occurrence of species differences in metabolic activation. The results obtained reveal that formation of 1′-oxoestragole, which represents a minor metabolic route for 1′-hydroxyestragole in rat, is the main detoxification pathway of 1′-hydroxyestragole in humans. Due to a high level of this 1′-hydroxyestragole oxidation pathway in human liver, the predicted species differences in formation of 1′-sulfooxyestragole remain relatively low, with the predicted formation of 1′-sulfooxyestragole being twofold higher in human compared with male rat, even though the formation of its precursor 1′-hydroxyestragole was predicted to be fourfold higher in human. Overall, it is concluded that in spite of significant differences in the relative extent of different metabolic pathways between human and male rat there is a minor influence of species differences on the ultimate overall bioactivation of estragole to 1′-sulfooxyestragol

    International STakeholder NETwork (ISTNET): creating a developmental neurotoxicity (DNT) testing road map for regulatory purposes

    Get PDF
    A major problem in developmental neurotoxicity (DNT) risk assessment is the lack of toxicological hazard information for most compounds. Therefore, new approaches are being considered to provide adequate experimental data that allow regulatory decisions. This process requires a matching of regulatory needs on the one hand and the opportunities provided by new test systems and methods on the other hand. Alignment of academically and industrially-driven assay development with regulatory needs in the field of DNT is a core mission of the International STakeholder NETwork (ISNET) in DNT testing. The first meeting of ISTNET was held in Zurich on 23-24 January 2014 in order to explore the concept of adverse outcome pathway (AOP) to practical DNT testing. AOPs were considered promising tools to promote test systems development according to regulatory needs. Moreover, the AOP concept was identified as an important guiding principle to assemble predictive integrated testing strategies (ITSs) for DNT. The recommendations on a roadmap towards AOP-based DNT testing is considered a stepwise approach, operating initially with incomplete AOPs for compound grouping, and focussing on key events of neurodevelopment. Next steps to be considered in follow-up activities are the use of case studies to further apply the AOP concept in regulatory DNT testing, making use of AOP intersections (common key events) for economic development of screening assays, and addressing the transition from qualitative descriptions to quantitative network modelling.JRC.I.5-Systems Toxicolog

    Activation of cytochrome P450 gene expression in the rat brain by phenobarbital-like inducers

    No full text
    ABSTRACT Oxidative biotransformation, coupled with genetic variability in enzyme expression, has been the focus of hypotheses interrelating environmental and genetic factors in the etiology of central nervous system disease processes. Chemical modulation of cerebral cytochrome P450 (P450) monooxygenase expression character may be an important determinant of in situ metabolism, neuroendocrine homeostasis, and/or central nervous system toxicity resulting from exposure to neuroactive drugs and xenobiotic substances. To examine the capacity of the rat brain to undergo phenobarbital (PB)-mediated induction, we developed reverse transcription-polymerase chain reaction methods and evaluated the effects of several PB-like inducers on P450 and microsomal epoxide hydrolase gene expression. Animals treated i.p. with four daily doses of PB demonstrated markedly induced levels of CYP2B1, CYP2B2, and CYP3A1 mRNA in the striatum and cerebellum. In contrast, 1 or 2 days of PB treatment resulted in unchanged or even slightly decreased levels of CYP2B1 and CYP2B2 in the brain, although the latter treatments produced marked induction of the corresponding genes in the liver. Only slight increases in epoxide hydrolase RNA levels resulted in brains of PB-treated animals. Substantial activation of cerebral CYP2B1, CYP2B2, and CYP3A1 mRNA levels also resulted when animals were treated with the neuroactive drugs diphenylhydantoin and amitryptiline, and with the potential PB-like xenobiotic inducers trans-stilbene oxide and diallyl sulfide, whereas dichlorodiphenyltrichloroethane was less efficacious. Although the time course of the induction response is delayed in brain relative to that required for the liver, these results clearly establish that brain P450s are markedly PB inducible

    Use of computational tools in the field of food safety

    No full text
    In this article we give an overview of how computational methods are currently used in the field of food safety by national regulatory bodies, international advisory organisations and the food industry. Our results show that currently the majority of stakeholders in the field of food safety do not apply computational methods on a routine basis, mainly because of a lack of in-house expertise. Some organisations, however, are very experienced in their use and have developed specialised in-house approaches. Despite this variable situation, computational tools are widely perceived to be a useful tool to support regulatory assessments and decision making in the field of food safety. However, there is a widespread need to develop guidance documents and software tools that will promote and harmonise the use of computational methods, together with appropriate training. Keywords: Alternative method, Risk assessment, Quantitative Structure Activity Relationship (QSAR), Structure Activity Relationship (SAR), Toxicity, Mode of Action (MOA), Threshold of Toxicological Concern (TTC), Margin of Exposure (MoE), Lowest Observed Adverse Effect Level (LOAEL), Maximum Recommended Therapeutic Dose (MRTD).JRC.I.6-Systems toxicolog

    Incorporation of Metabolic Activation in the HPTLC-SOS-Umu-C Bioassay to Detect Low Levels of Genotoxic Chemicals in Food Contact Materials

    No full text
    The safety evaluation of food contact materials requires excluding mutagenicity and genotoxicity in migrates. Testing the migrates using in vitro bioassays has been proposed to address this challenge. To be fit for that purpose, bioassays must be capable of detecting very low, safety relevant concentrations of DNA-damaging substances. There is currently no bioassay compatible with such qualifications. High-performance thin-layer chromatography (HPTLC), coupled with the planar SOS Umu-C (p-Umu-C) bioassay, was suggested as a promising rapid test (~6 h) to detect the presence of low levels of mutagens/genotoxins in complex mixtures. The current study aimed at incorporating metabolic activation in this assay and testing it with a set of standard mutagens (4-nitroquinoline-N-oxide, aflatoxin B1, mitomycin C, benzo(a)pyrene, N-ethyl nitrourea, 2-nitrofluorene, 7,12-dimethylbenzanthracene, 2-aminoanthracene and methyl methanesulfonate). An effective bioactivation protocol was developed. All tested mutagens could be detected at low concentrations (0.016 to 230 ng/band, according to substances). The calculated limits of biological detection were found to be up to 1400-fold lower than those obtained with the Ames assay. These limits are lower than the values calculated to ensure a negligeable carcinogenic risk of 10−5. They are all compatible with the threshold of toxicological concern for chemicals with alerts for mutagenicity (150 ng/person). They cannot be achieved by any other currently available test procedures. The p-Umu-C bioassay may become instrumental in the genotoxicity testing of complex mixtures such as food packaging, foods, and environmental samples

    Establishing the level of safety concern for chemicals in food without the need for toxicity testing

    No full text
    There is demand for methodologies to establish levels of safety concern associated with dietary exposures to chemicals for which no toxicological data are available. In such situations, the application of in silico methods appears promising. To make safety statement requires quantitative predictions of toxicological reference points such as no observed adverse 7 effect level and carcinogenic potency for DNA-reacting chemicals. A decision tree (DT) has been developed to aid integrating exposure information and predicted toxicological reference points obtained with Quantitative Structure Activity Relationship ((Q)SAR) software and read-across techniques. The predicted toxicological values are compared with exposure to obtain margins of exposure (MoE). The size of the MoE defines the level of safety concern and should account for a number of uncertainties such as the classical interspecies and inter-individual variability as well as others determined on a case by case basis. An analysis of the uncertainties of in silico approaches together with results from case studies suggest that establishing safety concern based on application of the DT is unlikely to be significantly more uncertain than based on experimental data. The DT makes a full use of all data available, ensuring an adequate degree of conservatism. It can be used when fast decision making is required.JRC.I.5-Systems Toxicolog
    corecore