4,607 research outputs found

    Unified description of correlations in double quantum dots

    Full text link
    The two-level model for a double quantum dot coupled to two leads, which is ubiquitously used to describe charge oscillations, transmission-phase lapses and correlation-induced resonances, is considered in its general form. The model features arbitrary tunnelling matrix elements among the two levels and the leads and between the levels themselves (including the effect of Aharonov-Bohm fluxes), as well as inter-level repulsive interactions. We show that this model is exactly mapped onto a generalized Anderson model of a single impurity, where the electrons acquire a pseudo-spin degree of freedom, which is conserved by the tunnelling but not within the dot. Focusing on the local-moment regime where the dot is singly occupied, we show that the effective low-energy Hamiltonian is that of the anisotropic Kondo model in the presence of a tilted magnetic field. For moderate values of the (renormalized) field, the Bethe ansatz solution of the isotropic Kondo model allows us to derive accurate expressions for the dot occupation numbers, and henceforth its zero-temperature transmission. Our results are in excellent agreement with those obtained from the Bethe ansatz for the isotropic Anderson model, and with the functional and numerical renormalization-group calculations of Meden and Marquardt [Phys. Rev. Lett. 96, 146801 (2006)], which are valid for the general anisotropic case. In addition we present highly accurate estimates for the validity of the Schrieffer-Wolff transformation (which maps the Anderson Hamiltonian onto the low-energy Kondo model) at both the high- and low-magnetic field limits. Perhaps most importantly, we provide a single coherent picture for the host of phenomena to which this model has been applied.Comment: 23 pages, 7 figure

    Kondo-lattice model: Application to the temperature-dependent electronic structure of EuO(100) films

    Full text link
    We present calculations for the temperature-dependent electronic structure and magnetic properties of thin ferromagnetic EuO films. The treatment is based on a combination of a multiband-Kondo lattice model with first-principles TB-LMTO band structure calculations. The method avoids the problem of double-counting of relevant interactions and takes into account the correct symmetry of the atomic orbitals. We discuss the temperature-dependent electronic structures of EuO(100) films in terms of quasiparticle densities of states and quasiparticle band structures. The Curie temperature T_C of the EuO films turns out to be strongly thickness-dependent, starting from a very low value = 15K for the monolayer and reaching the bulk value at about 25 layers

    Transient currents and universal timescales for a fully time-dependent quantum dot in the Kondo regime

    Full text link
    Using the time-dependent non-crossing approximation, we calculate the transient response of the current through a quantum dot subject to a finite bias when the dot level is moved suddenly into a regime where the Kondo effect is present. After an initial small but rapid response, the time-dependent conductance is a universal function of the temperature, bias, and inverse time, all expressed in units of the Kondo temperature. Two timescales emerge: the first is the time to reach a quasi-metastable point where the Kondo resonance is formed as a broad structure of half-width of the order of the bias; the second is the longer time required for the narrower split peak structure to emerge from the previous structure and to become fully formed. The first time can be measured by the gross rise time of the conductance, which does not substantially change later while the split peaks are forming. The second time characterizes the decay rate of the small split Kondo peak (SKP) oscillations in the conductance, which may provide a method of experimental access to it. This latter timescale is accessible via linear response from the steady stateand appears to be related to the scale identified in that manner [A. Rosch, J. Kroha, and P. Wolfle, Phys. Rev. Lett. 87, 156802 (2001)].Comment: Revtex with 15 eps figures. Compiles to 11 page

    An ultra-sensitive pulsed balanced homodyne detector: Application to time-domain quantum measurements

    Full text link
    A pulsed balanced homodyne detector has been developed for precise measurements of electric field quadratures of pulsed optical quantum states. A high level of common mode suppression (> 85 dB) and low electronic noise (730 electrons per pulse) provide a signal to noise ratio of 14 dB for the measurement of the quantum noise of individual pulses. Measurements at repetition rates up to 1 MHz are possible. As a test, quantum tomography of the coherent state is performed and the Wigner function and the density matrix are reconstructed with a 99.5% fidelity. The detection system can also be used for ultrasensitive balanced detection in cw mode, e.g. for weak absorption measurements.Comment: 3 pages, submitted to Optics Letter

    Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann

    Full text link
    On-site boundary conditions are often desired for lattice Boltzmann simulations of fluid flow in complex geometries such as porous media or microfluidic devices. The possibility to specify the exact position of the boundary, independent of other simulation parameters, simplifies the analysis of the system. For practical applications it should allow to freely specify the direction of the flux, and it should be straight forward to implement in three dimensions. Furthermore, especially for parallelized solvers it is of great advantage if the boundary condition can be applied locally, involving only information available on the current lattice site. We meet this need by describing in detail how to transfer the approach suggested by Zou and He to a D3Q19 lattice. The boundary condition acts locally, is independent of the details of the relaxation process during collision and contains no artificial slip. In particular, the case of an on-site no-slip boundary condition is naturally included. We test the boundary condition in several setups and confirm that it is capable to accurately model the velocity field up to second order and does not contain any numerical slip.Comment: 13 pages, 4 figures, revised versio

    Production of relativistic positronium in collisions of photons and electrons with nuclei and atoms

    Full text link
    We consider the production of ultrarelativistic positronium (Ps) in γAPs+A\gamma A \to Ps + A and eAPs+eAe A \to Ps + e A processes where AA is an atom or a nucleus with charge ZeZe. For the photoproduction of para- and ortho-Ps and the electroproduction of para-Ps we obtain the most complete description compared with previous works. It includes high order ZαZ \alpha corrections and polarization effects. The accuracy of the obtained cross sections is determined by omitted terms of the order of the inverse Ps Lorentz factor squared. The studied high order multi-photon electroproduction of ortho-Ps dominates for the collision of electrons with heavy atoms over the bremsstrahlung production from the electron via a virtual photon proposed by Holvik and Olsen. Our results complete and correct the studies of those authors.Comment: 19 pages, 9 figures, RevTex; v2: minor corrections for the accuracy of the results, a discussion of the literature added in a footnote, one additional reference; v3: diagram of Fig.2 correcte

    Production of para-- and orthopositronium at relativistic heavy ion colliders

    Full text link
    We consider the ortho-- and parapositronium production in the process AAAA+AA \to AA+ Ps where A is a nucleus with the charge number Z. The inclusive cross section and the energy distribution of the relativistic Ps are calculated which are of primary interest from the experimental point of view. The accuracy of the corresponding cross sections is given by omitting terms (Zα)2/L2\sim (Z\alpha )^2/L^2 for the para--Ps and (Zα)2/L\sim (Z\alpha)^2/L for the ortho--Ps production where L=lnγ29L=\ln{\gamma^2} \approx 9 and 16 for the RHIC and the LHC. Within this accuracy the multiphoton (Coulomb) corrections are taken into account. We show that the RHIC and the LHC will be Ps factories with a productions rate of about 105÷10810^5 \div 10^8 relativistic Ps per day. The fraction of the ortho--Ps is expected to be of the same order as that of the para--Ps for Au--Au and Pb--Pb collisions.Comment: 22 pages, 5 figures, RevTeX, misprint correcte

    Time- and compartment-resolved proteome profiling of the extracellular niche in lung injury and repair

    Get PDF
    The extracellular matrix (ECM) is a key regulator of tissue morphogenesis and repair. However, its composition and architecture are not well characterized. Here, we monitor remodeling of the extracellular niche in tissue repair in the bleomycin-induced lung injury mouse model. Mass spectrometry quantified 8,366 proteins from total tissue and bronchoalveolar lavage fluid (BALF) over the course of 8 weeks, surveying tissue composition from the onset of inflammation and fibrosis to its full recovery. Combined analysis ofproteome, secretome, and transcriptome highlighted post-transcriptional events during tissue fibrogenesis and defined the composition of airway epithelial lining fluid. To comprehensively characterize the ECM, we developed a quantitative detergent solubility profiling (QDSP) method, which identified Emilin-2 and collagen-XXVIII as novel constituents of the provisional repair matrix. QDSP revealed which secreted proteins interact with the ECM, and showed drastically altered association of morphogens to the insoluble matrix upon injury. Thus, our proteomic systems biology study assigns proteins to tissue compartments and uncovers their dynamic regulation upon lung injury and repair, potentially contributing to the development of anti-fibrotic strategies
    corecore