15 research outputs found

    Preventing drift of oxygen isotopes of CO<sub>2</sub>-in-air stored in glass sample flasks:new insights and recommendations

    Get PDF
    It is known that the oxygen isotope composition of CO2-in-air, when stored over longer time periods in glass sample flasks, tends to drift to more negative values while the carbon isotope composition remains stable. The exact mechanisms behind this drift were still unclear. New experimental results reveal that water already inside the flasks during sampling plays a major role in the drift of the oxygen isotopes. A drying method to remove any water sticking to the inner walls by evacuating the flasks for more than 72 h while heating to 60 °C significantly decreases drift of the oxygen isotopes. Moreover, flasks not dried with this method showed higher differences among drift rates of individual flasks. This is explained through the buildup of H2O molecules sticking to the inner walls. Humidity of the air samples in the flasks as well as surface characteristics will lead to differences among flasks. Results also show that permeability of water is higher through Viton O-ring flask seals than through polychlorotrifluoroethylene (PCTFE) shaft seals, and that the stability of flasks sealed with the latter is significantly better over time.</p

    Preventing drift of oxygen isotopes of CO<sub>2</sub>-in-air stored in glass sample flasks:new insights and recommendations

    Get PDF
    It is known that the oxygen isotope composition of CO2-in-air, when stored over longer time periods in glass sample flasks, tends to drift to more negative values while the carbon isotope composition remains stable. The exact mechanisms behind this drift were still unclear. New experimental results reveal that water already inside the flasks during sampling plays a major role in the drift of the oxygen isotopes. A drying method to remove any water sticking to the inner walls by evacuating the flasks for more than 72 h while heating to 60 °C significantly decreases drift of the oxygen isotopes. Moreover, flasks not dried with this method showed higher differences among drift rates of individual flasks. This is explained through the buildup of H2O molecules sticking to the inner walls. Humidity of the air samples in the flasks as well as surface characteristics will lead to differences among flasks. Results also show that permeability of water is higher through Viton O-ring flask seals than through polychlorotrifluoroethylene (PCTFE) shaft seals, and that the stability of flasks sealed with the latter is significantly better over time.</p

    Preventing drift of oxygen isotopes of CO<sub>2</sub>-in-air stored in glass sample flasks:new insights and recommendations

    Get PDF
    It is known that the oxygen isotope composition of CO2-in-air, when stored over longer time periods in glass sample flasks, tends to drift to more negative values while the carbon isotope composition remains stable. The exact mechanisms behind this drift were still unclear. New experimental results reveal that water already inside the flasks during sampling plays a major role in the drift of the oxygen isotopes. A drying method to remove any water sticking to the inner walls by evacuating the flasks for more than 72 h while heating to 60 °C significantly decreases drift of the oxygen isotopes. Moreover, flasks not dried with this method showed higher differences among drift rates of individual flasks. This is explained through the buildup of H2O molecules sticking to the inner walls. Humidity of the air samples in the flasks as well as surface characteristics will lead to differences among flasks. Results also show that permeability of water is higher through Viton O-ring flask seals than through polychlorotrifluoroethylene (PCTFE) shaft seals, and that the stability of flasks sealed with the latter is significantly better over time.</p

    Preventing drift of oxygen isotopes of CO<sub>2</sub>-in-air stored in glass sample flasks:new insights and recommendations

    Get PDF
    It is known that the oxygen isotope composition of CO2-in-air, when stored over longer time periods in glass sample flasks, tends to drift to more negative values while the carbon isotope composition remains stable. The exact mechanisms behind this drift were still unclear. New experimental results reveal that water already inside the flasks during sampling plays a major role in the drift of the oxygen isotopes. A drying method to remove any water sticking to the inner walls by evacuating the flasks for more than 72 h while heating to 60 °C significantly decreases drift of the oxygen isotopes. Moreover, flasks not dried with this method showed higher differences among drift rates of individual flasks. This is explained through the buildup of H2O molecules sticking to the inner walls. Humidity of the air samples in the flasks as well as surface characteristics will lead to differences among flasks. Results also show that permeability of water is higher through Viton O-ring flask seals than through polychlorotrifluoroethylene (PCTFE) shaft seals, and that the stability of flasks sealed with the latter is significantly better over time.</p

    Surface and Boundary Layer Exchanges of Volatile Organic Compounds, Nitrogen Oxides and Ozone During the GABRIEL Campaign

    Get PDF
    Abstract. We present an evaluation of sources, sinks and turbulent transport of nitrogen oxides, ozone and volatile organic compounds (VOC) in the boundary layer over French Guyana and Suriname during the October 2005 GABRIEL campaign by simulating observations with a single-column chemistry and climate model (SCM) along a zonal transect. Simulated concentrations of O3 and NO as well as NO2 photolysis rates over the forest agree well with observations when a small soil-biogenic NO emission flux was applied. This suggests that the photochemical conditions observed during GABRIEL reflect a pristine tropical low-NOx regime. The SCM uses a compensation point approach to simulate nocturnal deposition and daytime emissions of acetone and methanol and produces daytime boundary layer mixing ratios in reasonable agreement with observations. The area average isoprene emission flux, inferred from the observed isoprene mixing ratios and boundary layer height, is about half the flux simulated with commonly applied emission algorithms. The SCM nevertheless simulates too high isoprene mixing ratios, whereas hydroxyl concentrations are strongly underestimated compared to observations, which can at least partly explain the discrepancy. Furthermore, the model substantially overestimates the isoprene oxidation products methlyl vinyl ketone (MVK) and methacrolein (MACR) partly due to a simulated nocturnal increase due to isoprene oxidation. This increase is most prominent in the residual layer whereas in the nocturnal inversion layer we simulate a decrease in MVK and MACR mixing ratios, assuming efficient removal of MVK and MACR. Entrainment of residual layer air masses, which are enhanced in MVK and MACR and other isoprene oxidation products, into the growing boundary layer poses an additional sink for OH which is thus not available for isoprene oxidation. Based on these findings, we suggest pursuing measurements of the tropical residual layer chemistry with a focus on the nocturnal depletion of isoprene and its oxidation products.JRC.H.2-Climate chang

    Evaluation of a field-deployable Nafion (TM)-based air-drying system for collecting whole air samples and its application to stable isotope measurements of CO2

    Get PDF
    Atmospheric flask samples are either collected at atmospheric pressure by opening a valve of a pre-evacuated flask or pressurized with the help of a pump to a few bar above ambient pressure. Under humid conditions, there is a risk that water vapor in the sample leads to condensation on the walls of the flask, notably at higher than ambient sampling pressures. Liquid water in sample flasks is known to affect the CO2 mixing ratios and also alters the isotopic composition of oxygen (17O and 18O) in CO2 via isotopic equilibration. Hence, for accurate determination of CO2 mole fractions and its stable isotopic composition, it is vital to dry the air samples to a sufficiently low dew point before they are pressurized in flasks to avoid condensation. Moreover, the drying system itself should not influence the mixing ratio and the isotopic composition of CO2 or that of the other constituents under study. For the Airborne Stable Isotopes of Carbon from the Amazon (ASICA) project focusing on accurate measurements of CO2 and its singly substituted stable isotopologues over the Amazon, an air-drying system capable of removing water vapor from air sampled at a dew point lower than -2 °C, flow rates up to 12 L min-1 and without the need for electrical power was needed. Since to date no commercial air-drying device that meets these requirements has been available, we designed and built our own consumable-free, power-free and portable drying system based on multitube Nafion™ gas sample driers (Perma Pure, Lakewood, USA). The required dry purge air is provided by feeding the exhaust flow of the flask sampling system through a dry molecular sieve (type 3A) cartridge. In this study we describe the systematic evaluation of our Nafion™-based air sample dryer with emphasis on its performance concerning the measurements of atmospheric CO2 mole fractions and the three singly substituted isotopologues of CO2 (16O13C16O, 16O12C17O and 16O12C18O), as well as the trace gas species CH4, CO, N2O and SF6. Experimental results simulating extreme tropical conditions (saturated air at 33 °C) indicated that the response of the air dryer is almost instantaneous and that approximately 85 L of air, containing up to 4 % water vapor, can be processed staying below a -2 °C dew point temperature (at 275 kPa). We estimated that at least eight flasks can be sampled (at an overpressure of 275 kPa) with a water vapor content below -2 °C dew point temperature during a typical flight sampling up to 5 km altitude over the Amazon, whereas the remaining samples would stay well below 5 °C dew point temperature (at 275 kPa). The performance of the air dryer on measurements of CO2, CH4, CO, N2O, and SF6 and the CO2 isotopologues 16O13C16O and 16O12C18O was tested in the laboratory simulating real sampling conditions by compressing humidified air from a calibrated cylinder, after being dried by the air dryer, into sample flasks. We found that the mole fraction and the isotopic composition difference between the different test conditions (including the dryer) and the base condition (dry air, without dryer) remained well within or very close to, in the case of N2O, the World Meteorological Organization recommended compatibility goals for independent measurement programs, proving that the test condition induced no significant bias on the sample measurements

    JRC-Ispra Atmosphere-Biosphere-Climate Integrated monitoring Station 2012 report

    Get PDF
    The Institute for Environment and Sustainability provide long-term observations of the atmosphere within international programs and research projects. These observations are performed from the research infrastructure named ABC-IS: Atmosphere – Biosphere – Climate Integrated monitoring station. Most measurements are performed at the JRC-Ispra site. Observations are also carried out from two other platforms: the forest station in San Rossore, and a ship cruising in the Western Mediterranean sea. This document reports about measurement programs, the equipment which is deployed, the data quality assessment, and the results obtained for each site. Our observations are presented, compared to each other, as well as to historical data obtained over more than 25 years at the Ispra siteJRC.H.2-Air and Climat

    Sources and sinks of carbonyl sulfide inferred from tower and mobile atmospheric observations in the Netherlands

    Get PDF
    Carbonyl sulfide (COS) is a promising tracer for the estimation of terrestrial ecosystem gross primary production (GPP). However, understanding its non-GPP-related sources and sinks, e.g., anthropogenic sources and soil sources and sinks, is also critical to the success of the approach. Here we infer the regional sources and sinks of COS using continuous in situ mole fraction profile measurements of COS along the 60gm tall Lutjewad tower (1gmga.s.l.; 53g 24′gN, 6g 21′gE) in the Netherlands. To identify potential sources that caused the observed enhancements of COS mole fractions at Lutjewad, both discrete flask samples and in situ measurements in the province of Groningen were made from a mobile van using a quantum cascade laser spectrometer (QCLS). We also simulated the COS mole fractions at Lutjewad using the Stochastic Time-Inverted Lagrangian Transport (STILT) model combined with emission inventories and plant uptake fluxes. We determined the nighttime COS fluxes to be -3.0±2.6gpmolgm-2gs-1 using the radon-tracer correlation approach and Lutjewad observations. Furthermore, we identified and quantified several COS sources, including biodigesters, sugar production facilities and silicon carbide production facilities in the province of Groningen. Moreover, the simulation results show that the observed COS enhancements can be partially explained by known industrial sources of COS and CS2, in particular from the Ruhr Valley (51.5gN, 7.2gE) and Antwerp (51.2gN, 4.4gE) areas. The contribution of likely missing anthropogenic sources of COS and CS2 in the inventory may be significant. The impact of the identified sources in the province of Groningen is estimated to be negligible in terms of the observed COS enhancements. However, in specific conditions, these sources may influence the measurements in Lutjewad. These results are valuable for improving our understanding of the sources and sinks of COS, contributing to the use of COS as a tracer for GPP.</p
    corecore