396 research outputs found

    History of Soil Geography in the Context of Scale

    Get PDF
    We review historical soil maps from a geographical perspective, in contrast to the more traditional temporal–historical perspective. Our geographical approach examines and compares soil maps based on their scale and classification system. To analyze the connection between scale in historical soil maps and their associated classification systems, we place soil maps into three categories of cartographic scale. We then examine how categories of cartographic scale correspond to the selection of environmental soil predictors used to initially create the maps, as reflected by the maps\u27 legend. Previous analyses of soil mapping from the temporal perspective have concluded that soil classification systems have co-evolved with gains in soil knowledge. We conclude that paradigm shifts in soil mapping and classification can be better explained by not only their correlation to historical improvements in scientific understanding, but also by differences in purpose for mapping, and due to advancements in geographic technology. We observe that, throughout history, small cartographic scale maps have tended to emphasize climate–vegetation zonation. Medium cartographic scale maps have put more emphasis on parent material as a variable to explain soil distributions. And finally, soil maps at large cartographic scales have relied more on topography as a predictive factor. Importantly, a key characteristic of modern soil classification systems is their multi-scale approach, which incorporates these phenomena scales within their classification hierarchies. Although most modern soil classification systems are based on soil properties, the soil map remains a model, the purpose of which is to predict the spatial distributions of those properties. Hence, multi-scale classification systems still tend to be organized, at least in part, by this observed spatial hierarchy. Although the hierarchy observed in this study is generally known in pedology today, it also represents a new view on the evolution of soil science. Increased recognition of this hierarchy may also help to more holistically combine soil formation factors with soil geography and pattern, particularly in the context of digital soil mapping

    Hornblende etching and quartz/feldspar ratios as weathering and soil development indicators in some Michigan soils

    Get PDF
    Abstract Weathering can be used as a highly effective relative age indicator. One such application involves etching of hornblende grains in soils. Etching increases with time (duration) and decreases with depth in soils and surficial sediments. Other variables, related to intensity of weathering and soil formation, are generally held as constant as possible so as to only minimally influence the time-etching relationship. Our study focuses on one of the variables usually held constant-climate-by examining hornblende etching and quartz/feldspar ratios in soils of similar age but varying degrees of development due to climatic factors. We examined the assumption that the degree of etching varies as a function of soil development, even in soils of similar age. The Spodosols we studied form a climate-mediated development sequence on a 13,000-yr-old outwash plain in Michigan. Their pedogenic development was compared to weathering-related data from the same soils. In general, soils data paralleled weathering data. Hornblende etching was most pronounced in the A and E horizons, and decreased rapidly with depth. Quartz/feldspar ratios showed similar but more variable trends. In the two most weakly developed soils, the Q/F ratio was nearly constant with depth, implying that this ratio may not be as effective a measure as are etching data for minimally weathered soils. Our data indicate that hornblende etching should not be used as a stand-alone relative age indicator, especially in young soils and in contexts where the degree of pedogenic variability on the geomorphic surface is large

    Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy

    Get PDF
    The Laser Interferometer Gravitational Wave Observatory (LIGO) has been directly detecting gravitational waves from compact binary mergers since 2015. We report on the first use of squeezed vacuum states in the direct measurement of gravitational waves with the Advanced LIGO H1 and L1 detectors. This achievement is the culmination of decades of research to implement squeezed states in gravitational-wave detectors. During the ongoing O3 observation run, squeezed states are improving the sensitivity of the LIGO interferometers to signals above 50 Hz by up to 3 dB, thereby increasing the expected detection rate by 40% (H1) and 50% (L1)

    Variation in Soil Respiration across Soil and Vegetation Types in an Alpine Valley.

    Get PDF
    BACKGROUND AND AIMS: Soils of mountain regions and their associated plant communities are highly diverse over short spatial scales due to the heterogeneity of geological substrates and highly dynamic geomorphic processes. The consequences of this heterogeneity for biogeochemical transfers, however, remain poorly documented. The objective of this study was to quantify the variability of soil-surface carbon dioxide efflux, known as soil respiration (Rs), across soil and vegetation types in an Alpine valley. To this aim, we measured Rs rates during the peak and late growing season (July-October) in 48 plots located in pastoral areas of a small valley of the Swiss Alps. FINDINGS: Four herbaceous vegetation types were identified, three corresponding to different stages of primary succession (Petasition paradoxi in pioneer conditions, Seslerion in more advanced stages and Poion alpinae replacing the climactic forests), as well as one (Rumicion alpinae) corresponding to eutrophic grasslands in intensively grazed areas. Soils were developed on calcareous alluvial and colluvial fan deposits and were classified into six types including three Fluvisols grades and three Cambisols grades. Plant and soil types had a high level of co-occurrence. The strongest predictor of Rs was soil temperature, yet we detected additional explanatory power of sampling month, showing that temporal variation was not entirely reducible to variations in temperature. Vegetation and soil types were also major determinants of Rs. During the warmest month (August), Rs rates varied by over a factor three between soil and vegetation types, ranging from 2.5 μmol m-2 s-1 in pioneer environments (Petasition on Very Young Fluvisols) to 8.5 μmol m-2 s-1 in differentiated soils supporting nitrophilous species (Rumicion on Calcaric Cambisols). CONCLUSIONS: Overall, this study provides quantitative estimates of spatial and temporal variability in Rs in the mountain environment, and demonstrates that estimations of soil carbon efflux at the watershed scale in complex geomorphic terrain have to account for soil and vegetation heterogeneity

    Point absorbers in Advanced LIGO

    Get PDF
    Small, highly absorbing points are randomly present on the surfaces of the main interferometer optics in Advanced LIGO. The resulting nanometer scale thermo-elastic deformations and substrate lenses from these micron-scale absorbers significantly reduce the sensitivity of the interferometer directly though a reduction in the power-recycling gain and indirect interactions with the feedback control system. We review the expected surface deformation from point absorbers and provide a pedagogical description of the impact on power buildup in second generation gravitational wave detectors (dual-recycled Fabry–Perot Michelson interferometers). This analysis predicts that the power-dependent reduction in interferometer performance will significantly degrade maximum stored power by up to 50% and, hence, limit GW sensitivity, but it suggests system wide corrections that can be implemented in current and future GW detectors. This is particularly pressing given that future GW detectors call for an order of magnitude more stored power than currently used in Advanced LIGO in Observing Run 3. We briefly review strategies to mitigate the effects of point absorbers in current and future GW wave detectors to maximize the success of these enterprises

    Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy

    Get PDF
    The Laser Interferometer Gravitational Wave Observatory (LIGO) has been directly detecting gravitational waves from compact binary mergers since 2015. We report on the first use of squeezed vacuum states in the direct measurement of gravitational waves with the Advanced LIGO H1 and L1 detectors. This achievement is the culmination of decades of research to implement squeezed states in gravitational-wave detectors. During the ongoing O3 observation run, squeezed states are improving the sensitivity of the LIGO interferometers to signals above 50 Hz by up to 3 dB, thereby increasing the expected detection rate by 40% (H1) and 50% (L1)

    Approaching the motional ground state of a 10 kg object

    Get PDF
    The motion of a mechanical object -- even a human-sized object -- should be governed by the rules of quantum mechanics. Coaxing them into a quantum state is, however, difficult: the thermal environment masks any quantum signature of the object's motion. Indeed, the thermal environment also masks effects of proposed modifications of quantum mechanics at large mass scales. We prepare the center-of-mass motion of a 10 kg mechanical oscillator in a state with an average phonon occupation of 10.8. The reduction in temperature, from room temperature to 77 nK, is commensurate with an 11 orders-of-magnitude suppression of quantum back-action by feedback -- and a 13 orders-of-magnitude increase in the mass of an object prepared close to its motional ground state. This begets the possibility of probing gravity on massive quantum systems.Comment: published version containing minor change

    Quantum correlations between the light and kilogram-mass mirrors of LIGO

    Get PDF
    Measurement of minuscule forces and displacements with ever greater precision encounters a limit imposed by a pillar of quantum mechanics: the Heisenberg uncertainty principle. A limit to the precision with which the position of an object can be measured continuously is known as the standard quantum limit (SQL). When light is used as the probe, the SQL arises from the balance between the uncertainties of photon radiation pressure imposed on the object and of the photon number in the photoelectric detection. The only possibility surpassing the SQL is via correlations within the position/momentum uncertainty of the object and the photon number/phase uncertainty of the light it reflects. Here, we experimentally prove the theoretical prediction that this type of quantum correlation is naturally produced in the Laser Interferometer Gravitational-wave Observatory (LIGO). Our measurements show that the quantum mechanical uncertainties in the phases of the 200 kW laser beams and in the positions of the 40 kg mirrors of the Advanced LIGO detectors yield a joint quantum uncertainty a factor of 1.4 (3dB) below the SQL. We anticipate that quantum correlations will not only improve gravitational wave (GW) observatories but all types of measurements in future
    corecore