169 research outputs found

    Piracy Risk and Measure Analysis

    Get PDF

    Co-Immobilization of Proteins and DNA Origami Nanoplates to Produce High-Contrast Biomolecular Nanoarrays

    Get PDF
    The biofunctionalization of nanopatterned surfaces with DNA origami nanostructures is an important topic in nanobiotechnology. An unexplored challenge is, however, to co-immobilize proteins with DNA origami at pre-determined substrate sites in high contrast relative to the nontarget areas. The immobilization should, in addition, preferably be achieved on a transparent substrate to allow ultrasensitive optical detection. If successful, specific co-binding would be a step towards stoichiometrically defined arrays with few to individual protein molecules per site. Here, we successfully immobilize with high specificity positively charged avidin proteins and negatively charged DNA origami nanoplates on 100 nm-wide carbon nanoislands while suppressing undesired adsorption to surrounding nontarget areas. The arrays on glass slides achieve unprecedented selectivity factors of up to 4000 and allow ultrasensitive fluorescence read-out. The co-immobilization onto the nanoislands leads to layered biomolecular architectures, which are functional because bound DNA origami influences the number of capturing sites on the nanopatches for other proteins. The novel hybrid DNA origami-protein nanoarrays allow the fabrication of versatile research platforms for applications in biosensing, biophysics, and cell biology, and, in addition, represent an important step towards single-molecule protein arrays

    Eptinezumab for the prevention of chronic migraine: efficacy and safety through 24 weeks of treatment in the phase 3 PROMISE-2 (Prevention of migraine via intravenous ALD403 safety and efficacy-2) study.

    Get PDF
    BACKGROUND: PROMISE-2 was a phase 3, randomized, double-blind, placebo-controlled study that evaluated the efficacy and safety of repeat intravenous (IV) doses of the calcitonin gene-related peptide-targeted monoclonal antibody eptinezumab (ALD403) for migraine prevention in adults with chronic migraine. This report describes the results of PROMISE-2 through 24 weeks of treatment. METHODS: Patients received up to two 30-min IV administrations of eptinezumab 100 mg, 300 mg, or placebo separated by 12 weeks. Patients recorded migraine and headache endpoints in a daily eDiary. Additional assessments, including patient-reported outcomes, were performed at regularly scheduled clinic visits throughout the 32-week study period (screening, day 0, and weeks 2, 4, 8, 12, 16, 20, 24, and 32). RESULTS: A total of 1072 adults received treatment: eptinezumab 100 mg, n = 356; eptinezumab 300 mg, n = 350; placebo, n = 366. The reduction in mean monthly migraine days observed during the first dosing interval (100 mg, - 7.7 days; 300 mg, - 8.2 days; placebo, - 5.6 days) was further decreased after an additional dose (100 mg, - 8.2 days; 300 mg, - 8.8 days; placebo, - 6.2 days), with both doses of eptinezumab demonstrating consistently greater reductions from baseline compared to placebo. The ≥50% and ≥ 75% migraine responder rates (MRRs) increased after a second dose, with more eptinezumab-treated patients experiencing migraine response than placebo patients (≥50% MRRs weeks 13-24: 100 mg, 61.0%; 300 mg, 64.0%; placebo, 44.0%; and ≥ 75% MRRs weeks 13-24: 100 mg, 39.3%; 300 mg, 43.1%; placebo, 23.8%). The percentages of patients who improved on patient-reported outcomes, including the Headache Impact Test and Patient Global Impression of Change, increased following the second dose administration at week 12, and were greater with eptinezumab than with placebo at all time points. No new safety concerns were identified with the second dose regarding the incidence, nature, and severity of treatment-emergent adverse events. CONCLUSION: Eptinezumab 100 mg or 300 mg administered IV at day 0 and repeated at week 12 provided sustained migraine preventive benefit over a full 24 weeks and demonstrated an acceptable safety profile in patients with chronic migraine. TRIAL REGISTRATION: ClinicalTrials.gov (Identifier: NCT02974153 ). Registered November 23, 2016

    Stearoyl-CoA Desaturase-1 (SCD1) Augments Saturated Fatty Acid-Induced Lipid Accumulation and Inhibits Apoptosis in Cardiac Myocytes

    Get PDF
    Mismatch between the uptake and utilization of long-chain fatty acids in the myocardium leads to abnormally high intracellular fatty acid concentration, which ultimately induces myocardial dysfunction. Stearoyl-Coenzyme A desaturase-1 (SCD1) is a rate-limiting enzyme that converts saturated fatty acids (SFAs) to monounsaturated fatty acids. Previous studies have shown that SCD1-deficinent mice are protected from insulin resistance and diet-induced obesity; however, the role of SCD1 in the heart remains to be determined. We examined the expression of SCD1 in obese rat hearts induced by a sucrose-rich diet for 3 months. We also examined the effect of SCD1 on myocardial energy metabolism and apoptotic cell death in neonatal rat cardiac myocytes in the presence of SFAs. Here we showed that the expression of SCD1 increases 3.6-fold without measurable change in the expression of lipogenic genes in the heart of rats fed a high-sucrose diet. Forced SCD1 expression augmented palmitic acid-induced lipid accumulation, but attenuated excess fatty acid oxidation and restored reduced glucose oxidation. Of importance, SCD1 substantially inhibited SFA-induced caspase 3 activation, ceramide synthesis, diacylglycerol synthesis, apoptotic cell death, and mitochondrial reactive oxygen species (ROS) generation. Experiments using SCD1 siRNA confirmed these observations. Furthermore, we showed that exposure of cardiac myocytes to glucose and insulin induced SCD1 expression. Our results indicate that SCD1 is highly regulated by a metabolic syndrome component in the heart, and such induction of SCD1 serves to alleviate SFA-induced adverse fatty acid catabolism, and eventually to prevent SFAs-induced apoptosis

    CD14 Deficiency Impacts Glucose Homeostasis in Mice through Altered Adrenal Tone

    Get PDF
    The toll-like receptors comprise one of the most conserved components of the innate immune system, signaling the presence of molecules of microbial origin. It has been proposed that signaling through TLR4, which requires CD14 to recognize bacterial lipopolysaccharide (LPS), may generate low-grade inflammation and thereby affect insulin sensitivity and glucose metabolism. To examine the long-term influence of partial innate immune signaling disruption on glucose homeostasis, we analyzed knockout mice deficient in CD14 backcrossed into the diabetes-prone C57BL6 background at 6 or 12 months of age. CD14-ko mice, fed either normal or high-fat diets, displayed significant glucose intolerance compared to wild type controls. They also displayed elevated norepinephrine urinary excretion and increased adrenal medullary volume, as well as an enhanced norepinephrine secretory response to insulin-induced hypoglycemia. These results point out a previously unappreciated crosstalk between innate immune- and sympathoadrenal- systems, which exerts a major long-term effect on glucose homeostasis

    The Yeast La Related Protein Slf1p Is a Key Activator of Translation during the Oxidative Stress Response

    Get PDF
    The mechanisms by which RNA-binding proteins control the translation of subsets of mRNAs are not yet clear. Slf1p and Sro9p are atypical-La motif containing proteins which are members of a superfamily of RNA-binding proteins conserved in eukaryotes. RIP-Seq analysis of these two yeast proteins identified overlapping and distinct sets of mRNA targets, including highly translated mRNAs such as those encoding ribosomal proteins. In paralell, transcriptome analysis of slf1Δ and sro9Δ mutant strains indicated altered gene expression in similar functional classes of mRNAs following loss of each factor. The loss of SLF1 had a greater impact on the transcriptome, and in particular, revealed changes in genes involved in the oxidative stress response. slf1Δ cells are more sensitive to oxidants and RIP-Seq analysis of oxidatively stressed cells enriched Slf1p targets encoding antioxidants and other proteins required for oxidant tolerance. To quantify these effects at the protein level, we used label-free mass spectrometry to compare the proteomes of wild-type and slf1Δ strains following oxidative stress. This analysis identified several proteins which are normally induced in response to hydrogen peroxide, but where this increase is attenuated in the slf1Δ mutant. Importantly, a significant number of the mRNAs encoding these targets were also identified as Slf1p-mRNA targets. We show that Slf1p remains associated with the few translating ribosomes following hydrogen peroxide stress and that Slf1p co-immunoprecipitates ribosomes and members of the eIF4E/eIF4G/Pab1p ‘closed loop’ complex suggesting that Slf1p interacts with actively translated mRNAs following stress. Finally, mutational analysis of SLF1 revealed a novel ribosome interacting domain in Slf1p, independent of its RNA binding La-motif. Together, our results indicate that Slf1p mediates a translational response to oxidative stress via mRNA-specific translational control

    Immunological and Cardiometabolic Risk Factors in the Prediction of Type 2 Diabetes and Coronary Events: MONICA/KORA Augsburg Case-Cohort Study

    Get PDF
    BACKGROUND: This study compares inflammation-related biomarkers with established cardiometabolic risk factors in the prediction of incident type 2 diabetes and incident coronary events in a prospective case-cohort study within the population-based MONICA/KORA Augsburg cohort. METHODS AND FINDINGS: Analyses for type 2 diabetes are based on 436 individuals with and 1410 individuals without incident diabetes. Analyses for coronary events are based on 314 individuals with and 1659 individuals without incident coronary events. Mean follow-up times were almost 11 years. Areas under the receiver-operating characteristic curve (AUC), changes in Akaike's information criterion (ΔAIC), integrated discrimination improvement (IDI) and net reclassification index (NRI) were calculated for different models. A basic model consisting of age, sex and survey predicted type 2 diabetes with an AUC of 0.690. Addition of 13 inflammation-related biomarkers (CRP, IL-6, IL-18, MIF, MCP-1/CCL2, IL-8/CXCL8, IP-10/CXCL10, adiponectin, leptin, RANTES/CCL5, TGF-β1, sE-selectin, sICAM-1; all measured in nonfasting serum) increased the AUC to 0.801, whereas addition of cardiometabolic risk factors (BMI, systolic blood pressure, ratio total/HDL-cholesterol, smoking, alcohol, physical activity, parental diabetes) increased the AUC to 0.803 (ΔAUC [95% CI] 0.111 [0.092-0.149] and 0.113 [0.093-0.149], respectively, compared to the basic model). The combination of all inflammation-related biomarkers and cardiometabolic risk factors yielded a further increase in AUC to 0.847 (ΔAUC [95% CI] 0.044 [0.028-0.066] compared to the cardiometabolic risk model). Corresponding AUCs for incident coronary events were 0.807, 0.825 (ΔAUC [95% CI] 0.018 [0.013-0.038] compared to the basic model), 0.845 (ΔAUC [95% CI] 0.038 [0.028-0.059] compared to the basic model) and 0.851 (ΔAUC [95% CI] 0.006 [0.003-0.021] compared to the cardiometabolic risk model), respectively. CONCLUSIONS: Inclusion of multiple inflammation-related biomarkers into a basic model and into a model including cardiometabolic risk factors significantly improved the prediction of type 2 diabetes and coronary events, although the improvement was less pronounced for the latter endpoint

    Cross-language differences in fundamental frequency range: a comparison of English and German

    Get PDF
    This paper presents a systematic comparison of various measures of f0 range in female speakers of English and German. F0 range was analysed along two dimensions, level (i.e. overall f0 height) and span (extent of f0 modulation within a given speech sample). These were examined using two types of measures, one based on 'long-term distributional' (LTD) methods, and the other based on specific landmarks in speech that are linguistic in nature ('linguistic' measures). The various methods were used to identify whether and on what basis or bases speakers of these two languages differ in f0 range. Findings yielded significant cross-language differences in both dimensions of f0 range, but effect sizes were found to be larger for span than for level, and for linguistic than for LTD measures. The linguistic measures also uncovered some differences between the two languages in how f0 range varies through an intonation contour. This helps shed light on the relation between intonational structure and f0 range.caslAltenberg, E. P., and Ferrand, C. T. (2006). Fundamental frequency in monolingual English, bilingual English=Russian, and bilingual English- Cantonese young adult women,- J. Voice 20(1), 89-96. Awan, S. N., and Mueller, P. B. (1996). Speaking fundamental frequency characteristics of white, African American, and Hispanic kindergartners,- J. Speech. Hear. Res. 39(3), 573-577. Baken, R. J., and Orlikoff, R. F. (2000). Clinical Measurement of Speech and Voice, 2nd ed. (Singular Publishing Group, San Diego, CA). Banse, R., and Scherer, K. R. (1996). Acoustic profiles in vocal emotion expression,- J. Pers. Soc. Psychol. 70(3), 614-636. Beckman, M., and Ayers Elam, G. (1997). Guidelines for ToBI Labeling, version 3 (Ohio State University, Ohio). Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate-a practical and powerful approach to multiple testing,- J. R. Statist. Soc. B 57(1), 289-300. Boersma, P., and Weenink, D. (2007). Praat: Doing phonetics by computer (version 4.6) [computer program],- http:==www.praat.org= (Last viewed May 14, 2007). Breen, M., Dilley, L. C., Kraemer, J., and Gibson, E. (2012). Inter-transcriber agreement for two systems of prosodic annotation: ToBI (Tones and Break Indices) and RaP (Rhythm and Pitch),- Corpus Linguist. Linguist. Theory (in press). Brown, A., and Docherty, G. J. (1995). Phonetic variation in dysarthric speech as a function of sampling task,- Eur. J. Disord. Commun. 30(1), 17-35. Chen, S. H. (2005). The effects of tones on speaking frequency and intensity ranges in Mandarin and Min dialects,- J. Acoust. Soc. Am. 117(5), 3225-3230. Clark-Carter, D. (1997). Doing Quantitative Psychological Research: From Design to Report (Psychology Press, Hove, East Sussex). Cohen, J. (1960). A coefficient for agreement for nominal scales,- Educ. Psychol. Meas. 20, 37-46. Deutsch, D., Le, J., Shen, J., and Henthorn, T. (2009). The pitch levels of female speech in two Chinese villages,- J. Acoust. Soc. Am. 125(5), EL208-EL213. Diehl, J. J., Watson, D., Bennetto, L., Mcdonough, J., and Gunlogson, C. (2009). An acoustic analysis of prosody in high-functioning autism,- Appl. Psycholinguist. 30(3), 385-404. Dilley, L. C., and Brown, M. (2007). Effects of pitch range variation on f0 extrema in an imitation task,- J. Phonetics 35(4), 523-551. Dolson, M. (1994). The pitch of speech as a function of linguistic community,- Music. Percept. 11(3), 321-331. Eady, S. J. (1982). Differences in the F0 patterns of speech: Tone language versus stress language,- Lang. Speech 25, 29-42. Eckert, H., and Laver, J. (1994). Menschen und ihre Stimmen: Aspekte der vokalen Kommunikation (Humans and their Voices: Aspects of Vocal Communication) (Psychologie Verlags Union, Weinheim). Escudero, D., Aguilar, L., Vanrell, M. M., and Prieto, P. (2012). Analysis of inter-transcriber consistency in the Cat_ToBI prosodic labelling system,- Speech Communications, retrieved from http:==prosodia.upf. edu=home=arxiu=publicacions=escudero-et-al_analysis-intertranscriberconsistency- cattobi.pdf (Last viewed December 21, 2011). Field, A. (2005). Discovering Statistics using SPSS, 2nd ed. (SAGE Publications, London). Gibbon, D. (1998). German Intonation,- in Intonation Systems: A Survey of Twenty Languages, edited by D. J. Hirst and A. Di Christo (Cambridge University Press, Cambridge, MA), pp. 78-95. Grabe, E. (1998). Comparative intonational phonology: English and German,- Ph.D. thesis, Max Planck Institute for Psycholinguistics Nijmegen, Max Planck Institute Series in Psycholinguistics No. 7, Wageningen, Ponsen en Looien. Gussenhoven, C., Repp, B. H., Rietveld, A., Rump, H. H., and Terken, J. (1997). The perceptual prominence of fundamental frequency peaks,- J. Acoust. Soc. Am. 102(5), 3009-3022. Hanley, T. D., Snidecor, J. C., and Ringel, R. L. (1967). Some acoustic differences among languages,- Phonetica 14, 97-107. Hirschberg, J., and Ward, G. (1992). The influence of pitch range, duration, amplitude, and spectral features on the interpretation of the rise fall rise intonation contour in English,- J. Phonetics 20(2), 241-251. Hollien, H., Hollien, P. A., and de Jong, G. (1997). Effects of three parameters on speaking fundamental frequency,- J. Acoust. Soc. Am. 102(5), 2984-2992. Hubbard, K., and Trauner, D. A. (2007). Intonation and emotion in autistic spectrum disorders,- J. Psycholinguist. Res. 36(2), 159-173. Keating, P., and Kuo, G. (2010). Comparison of speaking fundamental frequency in English and Mandarin,- UCLA Work. Papers Phonetics 108, 164-187. Kreiman, J., and Van Lancker Sidtis, D. (2011). Foundations of Voice Studies: An Interdisciplinary Approach to Voice Production and Perception (John Wiley and Sons, Chichester). Ladd, D. R. (2008). Intonational Phonology, 2nd ed. (Cambridge University Press, Cambridge). Ladd, D. R., Silverman, K. E. A., Tolkmitt, F., Bergmann, G., and Scherer, K. R. (1985). Evidence for the independent function of intonation contour type, voice quality, and F0 range in signaling speaker affect,- J. Acoust. Soc. Am. 78(2), 435-444. Landis, J., and Koch, G. (1977). The measurement of observer agreement for categorical data,- Biometrics 33(1), 159-174. Liberman, M., and Pierrehumbert, J. (1984). Intonational invariance under changes in pitch range and length,- in Language Sound Structure, edited by M. Aronoff, R. Oehrle, F. Kelley, and B. W. Stephens (MIT Press, Cambridge, MA), pp. 157-233. Majewski, W., Hollien, H., and Zalewski, J. (1972). Speaking fundamental frequency of Polish adult males,- Phonetica 25(2), 119-125. Mangold, M., and Grebe, P. (2005). Duden Ausspracheworterbuch (Duden Pronunciation Dictionary), 6th ed. (Dudenverlag, Mannheim). Nishio, M., and Niimi, S. (2008). Changes in speaking fundamental frequency characteristics with aging,- Folia Phoniatr. Logo. 60(3), 120-127. NIST=SEMATECH e-Handbook of Statistical Methods, (2010). http:==www.itl.nist.gov=div898=handbook= (Last viewed October 26, 2010). Patterson, D. (2000). A linguistic approach to pitch range modelling,- Ph.D. thesis, University of Edinburgh, Edinburgh. Pierrehumbert, J. (1979). Perception of fundamental-frequency declination,- J. Acoust. Soc. Am. 66(2), 363-369. Pierrehumbert, J. (1980). The phonology and phonetics of English intonation,- Ph.D. thesis, MIT, Cambridge, MA. Rendall, D., Vokey, J. R., and Nemeth, C. (2007). Lifting the curtain on the Wizard of Oz: Biased voice-based impressions of speaker size,- J. Exp. Psychol. Hum. Percept. Perform. 33(5), 1208-1219. Sobin, C., and Alpert, M. (1999). Emotion in speech: The acoustic attributes of fear, anger, sadness, and joy,- J. Psycholinguist. Res. 28(4), 347-365. Terken, J. (1994). Fundamental-frequency and perceived prominence of accented syllables II: Nonfinal accents,- J. Acoust. Soc. Am. 95(6), 3662-3665. 't Hart, J., Collier, R., and Cohen, A. (1990). A Perceptual Study of Intonation (Cambridge University Press, Cambridge). Van Bezooijen, R. (1995). Sociocultural aspects of pitch differences between Japanese and Dutch women,- Lang. Speech 38, 253-265. Van Dommelen, W. A., and Moxness, B. H. (1995). Acoustic parameters in speaker height and weight identification: Sex-specific behaviour,- Lang. Speech 38, 267-287. Wells, J. C. (1982). Accents of English (Cambridge University Press, Cambridge), Vols. 1-3. Yoon, T., Chavarria, S., Cole, J., and Hasegawa, M. (2004). Intertranscriber reliability of prosodic labeling on telephone conversation using ToBI,- Proc. Interspeech 2004, 2729-2732.131pub2622pub
    • …
    corecore