135 research outputs found

    Bi-directional Photogoniometer for the Assessment of the Luminous Properties of Fenestration Systems

    Get PDF
    Most energy saving applications of advanced fenestration systems (solar blinds, novel types of glazing and daylight redirecting devices) require a precise knowledge of their directional light transmission features. These photometric properties can be described by a Bi-directional Transmission Distribution Function (BTDF) whose experimental assessment requires appropriate equipment. A novel bi-directional transmission photogoniometer, based on digital imaging techniques, was designed and set up for that purpose. The apparatus takes advantage of a modern video image capturing device (CCD digital camera) as well as of powerful image analysis software (pattern recognition) to considerably reduce the scanning time of a BTDF measurement, in comparison to existing devices that use a conventional approach (mobile photometer). A detailed calibration and validation procedure was used to obtain optimal experimental accuracy for the device during the assessment of BTDF data. It included a spectral, a photometric and a geometrical calibration of the digital video system, as well as several additional corrections, leading to an overall relative accuracy better than 11% for BTDF data. A special effort was made to improve the user-friendliness of BTDF measurement by facilitating the data acquisition and treatment (definition of a data acquisition and electronic data format) and by offering different possibilities of BTDF visualisation (hemispherical representation, axonometric view of photometric solids, C-planes). Overall, the photometric equipment was used to assess the BTDFs of more than 20 novel fenestration products of the industrial partner of the project (Baumann-Hüppe Storen AG). The experimental data produced was successfully used by the company to optimise the visual and energy saving performance of their products, which confirms the adequacy of the novel bi-directional photogoniometer for practical building applications

    SH3BGRL3 binds to myosin 1c in a calcium dependent manner and modulates migration in the MDA-MB-231 cell line

    Get PDF
    Background: The human SH3 domain Binding Glutamic acid Rich Like 3 (SH3BGRL3) gene is highly conserved in phylogeny and widely expressed in human tissues. However, its function is largely undetermined. The protein was found to be overexpressed in several tumors, and recent work suggested a possible relationship with EGFR family members. We aimed at further highlighting on these issues and investigated SH3BGRL3 molecular interactions and its role in cellular migration ability. Results: We first engineered the ErbB2-overexpressing SKBR3 cells to express exogenous SH3BGRL3, as well as wild type Myo1c or different deletion mutants. Confocal microscopy analysis indicated that SH3BGRL3 co-localized with Myo1c and ErbB2 at plasma membranes. However, co-immunoprecipitation assays and mass spectrometry demonstrated that SH3BGRL3 did not directly bind ErbB2, but specifically recognized Myo1c, on its IQ-bearing neck region. Importantly, the interaction with Myo1c was Ca2+-dependent. A role for SH3BGRL3 in cell migration was also assessed, as RNA interference of SH3BGRL3 in MDA-MB-231 cells, used as a classical migration model, remarkably impaired the migration ability of these cells. On the other side, its over-expression increased cell motility. Conclusion: The results of this study provide insights for the formulation of novel hypotheses on the putative role of SH3BGRL3 protein in the regulation of myosin-cytoskeleton dialog and in cell migration. It could be envisaged the SH3BGRL3-Myo1c interaction as a regulation mechanism for cytoskeleton dynamics. It is well known that, at low Ca2+ concentrations, the IQ domains of Myo1c are bound by calmodulin. Here we found that binding of Myo1c to SH3BGRL3 requires instead the presence of Ca2+. Thus, it could be hypothesized that Myo1c conformation may be modulated by Ca2+-driven mechanisms that involve alternative binding by calmodulin or SH3BGRL3, for the regulation of cytoskeletal activity

    Mitochondrial Pathway Mediates the Antileukemic Effects of Hemidesmus Indicus, a Promising Botanical Drug

    Get PDF
    Although cancers are characterized by the deregulation of multiple signalling pathways, most current anticancer therapies involve the modulation of a single target. Because of the enormous biological diversity of cancer, strategic combination of agents targeted against the most critical of those alterations is needed. Due to their complex nature, plant products interact with numerous targets and influence several biochemical and molecular cascades. The interest in further development of botanical drugs has been increasing steadily and the FDA recently approved the first new botanical prescription drug. The present study is designed to explore the potential antileukemic properties of Hemidesmus indicus with a view to contributing to further development of botanical drugs. Hemidesmus was submitted to an extensive in vitro preclinical evaluation.A variety of cellular assays and flow cytometry, as well as a phytochemical screening, were performed on different leukemic cell lines. We have demonstrated that Hemidesmus modulated many components of intracellular signaling pathways involved in cell viability and proliferation and altered the protein expression, eventually leading to tumor cell death, mediated by a loss of mitochondrial transmembrane potential and increased Bax/Bcl-2 ratio. ADP, adenine nucleotide translocator and mitochondrial permeability transition pore inhibitors did not reverse Hemidesmus-induced mitochondrial depolarization. Hemidesmus induced a significant [Ca(2+)](i) raise through the mobilization of intracellular Ca(2+) stores. Moreover, Hemidesmus significantly enhanced the antitumor activity of three commonly used chemotherapeutic drugs (methotrexate, 6-thioguanine, cytarabine). A clinically relevant observation is that its cytotoxic activity was also recorded in primary cells from acute myeloid leukemic patients.These results indicate the molecular basis of the antileukemic effects of Hemidesmus and identify the mitochondrial pathways and [Ca(2+)](i) as crucial actors in its anticancer activity. On these bases, we conclude that Hemidesmus can represent a valuable tool in the anticancer pharmacology, and should be considered for further investigations

    Induction of apoptosis of human primary osteoclasts treated with extracts from the medicinal plant Emblica officinalis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteoclasts (OCs) are involved in rheumatoid arthritis and in several pathologies associated with bone loss. Recent results support the concept that some medicinal plants and derived natural products are of great interest for developing therapeutic strategies against bone disorders, including rheumatoid arthritis and osteoporosis. In this study we determined whether extracts of <it>Emblica officinalis </it>fruits display activity of possible interest for the treatment of rheumatoid arthritis and osteoporosis by activating programmed cell death of human primary osteoclasts.</p> <p>Methods</p> <p>The effects of extracts from <it>Emblica officinalis </it>on differentiation and survival of human primary OCs cultures obtained from peripheral blood were determined by tartrate-acid resistant acid phosphatase (TRAP)-positivity and colorimetric MTT assay. The effects of <it>Emblica officinalis </it>extracts on induction of OCs apoptosis were studied using TUNEL and immunocytochemical analysis of FAS receptor expression. Finally, <it>in vitro </it>effects of <it>Emblica officinalis </it>extracts on NF-kB transcription factor activity were determined by gel shift experiments.</p> <p>Results</p> <p>Extracts of <it>Emblica officinalis </it>were able to induce programmed cell death of mature OCs, without altering, at the concentrations employed in our study, the process of osteoclastogenesis. <it>Emblica officinalis </it>increased the expression levels of Fas, a critical member of the apoptotic pathway. Gel shift experiments demonstrated that <it>Emblica officinalis </it>extracts act by interfering with NF-kB activity, a transcription factor involved in osteoclast biology. The data obtained demonstrate that <it>Emblica officinalis </it>extracts selectively compete with the binding of transcription factor NF-kB to its specific target DNA sequences. This effect might explain the observed effects of <it>Emblica officinalis </it>on the expression levels of interleukin-6, a NF-kB specific target gene.</p> <p>Conclusion</p> <p>Induction of apoptosis of osteoclasts could be an important strategy both in interfering with rheumatoid arthritis complications of the bone skeleton leading to joint destruction, and preventing and reducing osteoporosis. Accordingly, we suggest the application of <it>Emblica officinalis </it>extracts as an alternative tool for therapy applied to bone diseases.</p
    • …
    corecore