64 research outputs found

    Biotrickling filtration of isopropanol under intermittent loading conditions

    Get PDF
    This paper investigates the removal of isopropanol by gas phase biotrickling filtration. Two plastic packing materials, one structured and one random, have been evaluated in terms of oxygen mass transfer and isopropanol removal efficiency (RE). Oxygen mass transfer experiments were performed at gas velocities of 104 and 312 m h-1 and liquid velocities between 3 and 33 m h-1. Both materials showed similar mass transfer coefficients up to liquid velocities of 15 m h-1. At greater liquid velocities, the structured packing exhibited greater oxygen mass transfer coefficients. Biotrickling filtration experiments were carried out at inlet loads (IL) from 20 to 65 g C m-3 h -1 and empty bed residence times (EBRT) from 15 14 to 160 s. To simulate typical industrial emissions, intermittent isopropanol loading (16 h/day, 5 16 day/week) and intermittent spraying frequency (15 min/1.5 hours) were applied. Maximum elimination capacity (EC) of 51 g C m-3 h -1 has been obtained for the random packing (IL of 65 g C m-3 h -1 17 , EBRT of 18 50 s). The decrease in irrigation frequency to 15 min every 3 hours caused a decrease in the outlet emissions from 86 to 59 mg C Nm-3 (inlet of 500 mg C Nm-3). The expansion of spraying to night and weekend periods promoted the degradation of the isopropanol accumulated in the water tank during the day, reaching effluent concentrations as low as 44 mg C Nm-3. After a 7 week starvation period, theperformance was recovered in less than 10 days, proving the robustness of the proces

    Top 20 EGFR+ NSCLC Clinical and Translational Science Papers That Shaped the 20 Years Since the Discovery of Activating EGFR Mutations in NSCLC. An Editor-in-Chief Expert Panel Consensus Survey.

    Get PDF
    Sai-Hong Ignatius Ou,1 Xiuning Le,2 Misako Nagasaka,1 Thanyanan Reungwetwattana,3 Myung-Ju Ahn,4 Darren WT Lim,5 Edgardo S Santos,6 Elaine Shum,7 Sally CM Lau,7 Jii Bum Lee,8 Antonio Calles,9 Fengying Wu,10 Gilberto Lopes,11 Virote Sriuranpong,12 Junko Tanizaki,13 Hidehito Horinouchi,14 Marina C Garassino,15 Sanjay Popat,16 Benjamin Besse,17 Rafael Rosell,18 Ross A Soo19 1University of California Irvine School of Medicine, Chao Family Comprehensive Cancer Center, Orange, CA, USA; 2University of Texas MD Anderson Cancer Center, Houston, TX, USA; 3Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; 4Department of Hematology and Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; 5Duke-NUS School of medicine, National Cancer Center Singapore, Republic of Singapore; 6Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA; 7NYU Langone Perlmutter Cancer Center, NY, NY, USA; 8Yonsei Cancer Center Yonsei University, Seoul, Republic of Korea; 9Department of Medicine, Division of Medical Oncology, Early Drug Development and Phase I Unit, Hospital General Universitario Gregorio Marañón, Madrid, 28007, Spain; 10Shanghai Chest hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China; 11Department of Medicine, Division of Medical Oncology, Sylvester Comprehensive Cancer Center at the University of Miami and the Miller School of Medicine, Miami, FL, 33136, USA; 12Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; 13Department of Medicine, Kindai University School of Medicine, Osaka, Japan; 14Department of Thoracic Oncology, National Cancer Center Hospital Tokyo, Tokyo, Japan; 15Department of Medicine, Division of Medical Oncology-Hematology, University of Chicago Medicine, Chicago, IL, USA; 16Royal Marsden Hospital, London, Imperial College, London, UK; 17Gustave Roussy Cancer Campus, Villejuif, France; Paris-Saclay University, Orsay, France; 18Department of Hematology-Oncology, National University Cancer Institute, National University Hospital Singapore, Republic of Singapore; 19IOR, Quirón-Dexeus University Institute; ICO, Catalan Institute of Oncology; IGTP, Germans Trias i Pujol Research Institute, Barcelona, SpainCorrespondence: Sai-Hong Ignatius Ou, University of California School of Medicine, Department of Medicine, Division of Hematology-Oncology, Chao Family Comprehensive Cancer Center, 200 South Manchester Avenue, Suite 400, Orange, CA, 92868, USA, Tel +1 714-456-5153, Fax +1 714-456-2242, Email [email protected]: The year 2024 is the 20th anniversary of the discovery of activating epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC). Since then, tremendous advances have been made in the treatment of NSCLC based on this discovery. Some of these studies have led to seismic changes in the concept of oncology research and spurred treatment advances beyond NSCLC, leading to a current true era of precision oncology for all solid tumors. We now routinely molecularly profile all tumor types and even plasma samples of patients with NSCLC for multiple actionable driver mutations, independent of patient clinical characteristics nor is profiling limited to the advanced incurable stage. We are increasingly monitoring treatment responses and detecting resistance to targeted therapy by using plasma genotyping. Furthermore, we are now profiling early-stage NSCLC for appropriate adjuvant targeted treatment leading to an eventual potential “cure” in early-stage EGFR+ NSCLC which have societal implication on implementing lung cancer screening in never-smokers as most EGFR+ NSCLC patients are never-smokers. All these advances were unfathomable in 2004 when the five papers that described “discoveries” of activating EGFR mutations (del19, L858R, exon 20 insertions, and “uncommon” mutations) were published. To commemorate this 20th anniversary, we assembled a global panel of thoracic medical oncology experts to select the top 20 papers (publications or congress presentation) from the 20 years since this seminal discovery with December 31, 2023 as the cutoff date for inclusion of papers to be voted on. Papers ranked 21 to 30 were considered “honorable mention” and also annotated. Our objective is that these 30 papers with their annotations about their impact and even all the ranked papers will serve as “syllabus” for the education of future thoracic oncology trainees. Finally, we mentioned potential practice-changing clinical trials to be reported. One of them, LAURA was published online on June 2, 2024 was not included in the list of papers to be voted on but will surely be highly ranked if this consensus survery is performed again on the 25th anniversay of the discovery EGFR mutations (i.e. top 25 papers on the 25 years since the discovery of activating EGFR mutations).Keywords: EGFR mutations, expert panel, top 20 papers, 20th anniversary, NSCL

    Mucinous histology predicts for poor response rate and overall survival of patients with colorectal cancer and treated with first-line oxaliplatin- and/or irinotecan-based chemotherapy

    Get PDF
    The objective of this study was to investigate the efficacy of first-line chemotherapy containing irinotecan and/or oxaliplatin in patients with advanced mucinous colorectal cancer. Prognostic factors associated with response rate and survival were identified using univariate and multivariate logistic and/or Cox proportional hazards analyses. The population included 255 patients, of whom 49 (19%) had mucinous and 206 (81%) had non-mucinous colorectal cancer. The overall response rates for mucinous and non-mucinous tumours were 18.4 (95% CI, 7.5–29.2%) and 49% (95% CI, 42.2–55.8%), respectively (P=0.0002). After a median follow-up of 45 months, median overall survival for the mucinous patients was 14.0 months compared with 23.4 months for the non-mucinous group (hazard ratio (HR), 1.74; CI 95%, 1.27–3.31; P=0.0034). After adjustment for significant features by multivariate Cox regression analysis, mucinous histology was associated with poor overall survival (HR, 1.593, 95% CI, 1.05–2.40; P=0.0267), together with performance status ECOG 2, number of metastatic sites ⩾2, and peritoneal metastases. This retrospective analysis shows that patients with mucinous colorectal cancer have poor responsiveness to oxaliplatin/irinotecan-based first-line combination chemotherapy and an unfavourable prognosis compared with non-mucinous colorectal cancer patients

    Nonsense Mediated Decay Resistant Mutations Are a Source of Expressed Mutant Proteins in Colon Cancer Cell Lines with Microsatellite Instability

    Get PDF
    BACKGROUND: Frameshift mutations in microsatellite instability high (MSI-High) colorectal cancers are a potential source of targetable neo-antigens. Many nonsense transcripts are subject to rapid degradation due to nonsense-mediated decay (NMD), but nonsense transcripts with a cMS in the last exon or near the last exon-exon junction have intrinsic resistance to nonsense-mediated decay (NMD). NMD-resistant transcripts are therefore a likely source of expressed mutant proteins in MSI-High tumours. METHODS: Using antibodies to the conserved N-termini of predicted mutant proteins, we analysed MSI-High colorectal cancer cell lines for examples of naturally expressed mutant proteins arising from frameshift mutations in coding microsatellites (cMS) by immunoprecipitation and Western Blot experiments. Detected mutant protein bands from NMD-resistant transcripts were further validated by gene-specific short-interfering RNA (siRNA) knockdown. A genome-wide search was performed to identify cMS-containing genes likely to generate NMD-resistant transcripts that could encode for antigenic expressed mutant proteins in MSI-High colon cancers. These genes were screened for cMS mutations in the MSI-High colon cancer cell lines. RESULTS: Mutant protein bands of expected molecular weight were detected in mutated MSI-High cell lines for NMD-resistant transcripts (CREBBP, EP300, TTK), but not NMD-sensitive transcripts (BAX, CASP5, MSH3). Expression of the mutant CREBBP and EP300 proteins was confirmed by siRNA knockdown. Five cMS-bearing genes identified from the genome-wide search and without existing mutation data (SFRS12IP1, MED8, ASXL1, FBXL3 and RGS12) were found to be mutated in at least 5 of 11 (45%) of the MSI-High cell lines tested. CONCLUSION: NMD-resistant transcripts can give rise to expressed mutant proteins in MSI-High colon cancer cells. If commonly expressed in primary MSI-High colon cancers, MSI-derived mutant proteins could be useful as cancer specific immunological targets in a vaccine targeting MSI-High colonic tumours

    Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK): Explanation and Elaboration

    Get PDF
    The REMARK “elaboration and explanation” guideline, by Doug Altman and colleagues, provides a detailed reference for authors on important issues to consider when designing, conducting, and analyzing tumor marker prognostic studies

    EPMA position paper in cancer: current overview and future perspectives

    Get PDF
    corecore