119 research outputs found

    Development of high-throughput methods to screen disease caused by Rhizoctonia solani AG 2-1 in oilseed rape

    Get PDF
    Background: Rhizoctonia solani (Kühn) is a soil-borne, necrotrophic fungus causing damping off, root rot and stem canker in many cultivated plants worldwide. Oilseed rape (OSR, Brassica napus) is the primary host for anastomosis group (AG) 2-1 of R. solani causing pre- and post-emergence damping-off resulting in death of seedlings and impaired crop establishment. Presently, there are no known resistant OSR genotypes and the main methods for disease control are fungicide seed treatments and cultural practices. The identification of sources of resistance for crop breeding is essential for sustainable management of the disease. However, a high-throughput, reliable screening method for resistance traits is required. The aim of this work was to develop a low cost, rapid screening method for disease phenotyping and identification of resistance traits. Results: Four growth systems were developed and tested: (1) nutrient media plates, (2) compost trays, (3) light expanded clay aggregate (LECA) trays, and (4) a hydroponic pouch and wick system. Seedlings were inoculated with virulent AG 2-1 to cause damping-off disease and grown for a period of 4–10 days. Visual disease assessments were carried out or disease was estimated through image analysis using ImageJ. Conclusion: Inoculation of LECA was the most suitable method for phenotyping disease caused by R. solani AG 2-1 as it enabled the detection of differences in disease severity among OSR genotypes within a short time period whilst allowing measurements to be conducted on whole plants. This system is expected to facilitate identification of resistant germplasm

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Upregulation of calcium-sensing receptor and mitogen-activated protein kinase signalling in the regulation of growth and differentiation in colon carcinoma

    Get PDF
    In the present study, we demonstrate that Ca2+-induced growth inhibition and induction of differentiation in a line of human colon carcinoma cells (CBS) is dependent on mitogen-activated protein (MAP) kinase signaling and is associated with upregulation of extracellular calcium-sensing receptor (CaSR) expression. When CBS cells were grown in Ca2+-free medium and then switched to medium supplemented with 1.4 mM Ca2+, proliferation was reduced and morphologic features of differentiation were expressed. E-cadherin, which was minimally expressed in nonsupplemented medium, was rapidly induced in response to Ca2+ stimulation. Sustained activation of the extracellular signal-regulated kinase (ERK) occured in Ca2+-supplemented medium. When an inhibitor of ERK activation (10 μM U0126) was included in the Ca2+-supplemented culture medium, ERK-activation did not occur. Concomitantly, E-cadherin was not induced, cell proliferation remained high and differentiation was not observed. The same level of Ca2+ supplementation that induced MAP kinase activation also stimulated CaSR upregulation in CBS cells. A clonal isolate of the CBS line that did not upregulate CaSR expression in response to extracellular Ca2+ was isolated from the parent cells. This isolate failed to produce E-cadherin or undergo growth inhibition/induction of differentiation when exposed to Ca2+ in the culture medium. However, ERK-activation occurred as efficiently in this isolate as in parent CBS cells or in a cloned isolate that underwent growth reduction and differentiation in response to Ca2+ stimulation. Together, these data indicate that CaSR upregulation and MAP kinase signalling are both intermediates in the control of colon carcinoma cell growth and differentiation. They appear to function, at least in part, independently of one another

    Phosphodiesterase Inhibition Increases CREB Phosphorylation and Restores Orientation Selectivity in a Model of Fetal Alcohol Spectrum Disorders

    Get PDF
    Background: Fetal alcohol spectrum disorders (FASD) are the leading cause of mental retardation in the western world and children with FASD present altered somatosensory, auditory and visual processing. There is growing evidence that some of these sensory processing problems may be related to altered cortical maps caused by impaired developmental neuronal plasticity. Methodology/Principal Findings: Here we show that the primary visual cortex of ferrets exposed to alcohol during the third trimester equivalent of human gestation have decreased CREB phosphorylation and poor orientation selectivity revealed by western blotting, optical imaging of intrinsic signals and single-unit extracellular recording techniques. Treating animals several days after the period of alcohol exposure with a phosphodiesterase type 1 inhibitor (Vinpocetine) increased CREB phosphorylation and restored orientation selectivity columns and neuronal orientation tuning. Conclusions/Significance: These findings suggest that CREB function is important for the maturation of orientation selectivity and that plasticity enhancement by vinpocetine may play a role in the treatment of sensory problems in FASD

    Capsaicin-Induced Changes in LTP in the Lateral Amygdala Are Mediated by TRPV1

    Get PDF
    The transient receptor potential vanilloid type 1 (TRPV1) channel is a well recognized polymodal signal detector that is activated by painful stimuli such as capsaicin. Here, we show that TRPV1 is expressed in the lateral nucleus of the amygdala (LA). Despite the fact that the central amygdala displays the highest neuronal density, the highest density of TRPV1 labeled neurons was found within the nuclei of the basolateral complex of the amygdala. Capsaicin specifically changed the magnitude of long-term potentiation (LTP) in the LA in brain slices of mice depending on the anesthetic (ether, isoflurane) used before euthanasia. After ether anesthesia, capsaicin had a suppressive effect on LA-LTP both in patch clamp and in extracellular recordings. The capsaicin-induced reduction of LTP was completely blocked by the nitric oxide synthase (NOS) inhibitor L-NAME and was absent in neuronal NOS as well as in TRPV1 deficient mice. The specific antagonist of cannabinoid receptor type 1 (CB1), AM 251, was also able to reduce the inhibitory effect of capsaicin on LA-LTP, suggesting that stimulation of TRPV1 provokes the generation of anandamide in the brain which seems to inhibit NO synthesis. After isoflurane anesthesia before euthanasia capsaicin caused a TRPV1-mediated increase in the magnitude of LA-LTP. Therefore, our results also indicate that the appropriate choice of the anesthetics used is an important consideration when brain plasticity and the action of endovanilloids will be evaluated. In summary, our results demonstrate that TRPV1 may be involved in the amygdala control of learning mechanisms

    Randomized, controlled clinical trial of the DIALIVE liver dialysis device versus standard of care in patients with acute-on- chronic liver failure

    Get PDF
    Background & Aims Acute-on-chronic liver failure (ACLF) is characterized by severe systemic inflammation, multi-organ failure and high mortality rates. Its treatment is an urgent unmet need. DIALIVE is a novel liver dialysis device that aims to exchange dysfunctional albumin and remove damage- and pathogen-associated molecular patterns. This first-in-man randomized-controlled trial was performed with the primary aim of assessing the safety of DIALIVE in patients with ACLF, with secondary aims of evaluating its clinical effects, device performance and effect on pathophysiologically relevant biomarkers. Methods Thirty-two patients with alcohol-related ACLF were included. Patients were treated with DIALIVE for up to 5 days and end points were assessed at Day 10. Safety was assessed in all patients (n = 32). The secondary aims were assessed in a pre-specified subgroup that had at least three treatment sessions with DIALIVE (n = 30). Results There were no significant differences in 28-day mortality or occurrence of serious adverse events between the groups. Significant reduction in the severity of endotoxemia and improvement in albumin function was observed in the DIALIVE group, which translated into a significant reduction in the CLIF-C (Chronic Liver Failure consortium) organ failure (p = 0.018) and CLIF-C ACLF scores (p = 0.042) at Day 10. Time to resolution of ACLF was significantly faster in DIALIVE group (p = 0.036). Biomarkers of systemic inflammation such as IL-8 (p = 0.006), cell death [cytokeratin-18: M30 (p = 0.005) and M65 (p = 0.029)], endothelial function [asymmetric dimethylarginine (p = 0.002)] and, ligands for Toll-like receptor 4 (p = 0.030) and inflammasome (p = 0.002) improved significantly in the DIALIVE group. Conclusions These data indicate that DIALIVE appears to be safe and impacts positively on prognostic scores and pathophysiologically relevant biomarkers in patients with ACLF. Larger, adequately powered studies are warranted to further confirm its safety and efficacy. Impact and implications This is the first-in-man clinical trial which tested DIALIVE, a novel liver dialysis device for the treatment of cirrhosis and acute-on-chronic liver failure, a condition associated with severe inflammation, organ failures and a high risk of death. The study met the primary endpoint, confirming the safety of the DIALIVE system. Additionally, DIALIVE reduced inflammation and improved clinical parameters. However, it did not reduce mortality in this small study and further larger clinical trials are required to re-confirm its safety and to evaluate efficacy. Clinical trial number NCT03065699

    International Society of Sports Nutrition Position Stand: Probiotics.

    Get PDF
    Position statement: The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of probiotic supplementation to optimize the health, performance, and recovery of athletes. Based on the current available literature, the conclusions of the ISSN are as follows: 1)Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host (FAO/WHO).2)Probiotic administration has been linked to a multitude of health benefits, with gut and immune health being the most researched applications.3)Despite the existence of shared, core mechanisms for probiotic function, health benefits of probiotics are strain- and dose-dependent.4)Athletes have varying gut microbiota compositions that appear to reflect the activity level of the host in comparison to sedentary people, with the differences linked primarily to the volume of exercise and amount of protein consumption. Whether differences in gut microbiota composition affect probiotic efficacy is unknown.5)The main function of the gut is to digest food and absorb nutrients. In athletic populations, certain probiotics strains can increase absorption of key nutrients such as amino acids from protein, and affect the pharmacology and physiological properties of multiple food components.6)Immune depression in athletes worsens with excessive training load, psychological stress, disturbed sleep, and environmental extremes, all of which can contribute to an increased risk of respiratory tract infections. In certain situations, including exposure to crowds, foreign travel and poor hygiene at home, and training or competition venues, athletes' exposure to pathogens may be elevated leading to increased rates of infections. Approximately 70% of the immune system is located in the gut and probiotic supplementation has been shown to promote a healthy immune response. In an athletic population, specific probiotic strains can reduce the number of episodes, severity and duration of upper respiratory tract infections.7)Intense, prolonged exercise, especially in the heat, has been shown to increase gut permeability which potentially can result in systemic toxemia. Specific probiotic strains can improve the integrity of the gut-barrier function in athletes.8)Administration of selected anti-inflammatory probiotic strains have been linked to improved recovery from muscle-damaging exercise.9)The minimal effective dose and method of administration (potency per serving, single vs. split dose, delivery form) of a specific probiotic strain depends on validation studies for this particular strain. Products that contain probiotics must include the genus, species, and strain of each live microorganism on its label as well as the total estimated quantity of each probiotic strain at the end of the product's shelf life, as measured by colony forming units (CFU) or live cells.10)Preclinical and early human research has shown potential probiotic benefits relevant to an athletic population that include improved body composition and lean body mass, normalizing age-related declines in testosterone levels, reductions in cortisol levels indicating improved responses to a physical or mental stressor, reduction of exercise-induced lactate, and increased neurotransmitter synthesis, cognition and mood. However, these potential benefits require validation in more rigorous human studies and in an athletic population

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    corecore