3,615 research outputs found

    Visualising apoptosis in live zebrafish using fluorescence lifetime imaging with optical projection tomography to map FRET biosensor activity in space and time

    Get PDF
    Fluorescence lifetime imaging (FLIM) combined with optical projection tomography (OPT) has the potential to map Förster resonant energy transfer (FRET) readouts in space and time in intact transparent or near transparent live organisms such as zebrafish larvae, thereby providing a means to visualise cell signalling processes in their physiological context. Here the first application of FLIM OPT to read out biological function in live transgenic zebrafish larvae using a genetically expressed FRET biosensor is reported. Apoptosis, or programmed cell death, is mapped in 3-D by imaging the activity of a FRET biosensor that is cleaved by Caspase 3, which is a key effector of apoptosis. Although apoptosis is a naturally occurring process during development, it can also be triggered in a variety of ways, including through gamma irradiation. FLIM OPT is shown here to enable apoptosis to be monitored over time, in live zebrafish larvae via changes in Caspase 3 activation following gamma irradiation at 24 hours post fertilisation. Significant apoptosis was observed at 3.5 hours post irradiation, predominantly in the head region

    An automated multiwell plate reading film microscope for live cell autofluorescence lifetime assays

    Get PDF
    Fluorescence lifetime imaging (FLIM) is increasingly used to read out cellular autofluorescence originating from the coenzyme NADH in the context of investigating cell metabolic state. We present here an automated multiwell plate reading FLIM microscope optimized for UV illumination with the goal of extending high content fluorescence lifetime assays to readouts of metabolism. We demonstrate its application to automated cellular autofluorescence lifetime imaging and discuss the key practical issues associated with its implementation. In particular, we illustrate its capability to read out the NADH-lifetime response of cells to metabolic modulators, thereby illustrating the potential of the instrument for cytotoxicity studies, assays for drug discovery and stratified medicine

    The effect of TiO2 coatings on the formation of ozone and nitrogen oxides in non-thermal atmospheric pressure plasma

    Get PDF
    The use of photocatalytic materials in plasma systems has the potential to enhance the selectivity and yield of desired products. However, the surface interaction between the photocatalyst and plasma is a complex process that is not well understood. This work presents a comprehensive study of the effects of combining titanium dioxide (TiO2) photocatalysts with non-thermal atmospheric pressure nitrogen-oxygen plasmas, which increases the production of ozone and dinitrogen pentoxide (N2O5) while limiting the formation of harmful nitrogen dioxide (NO2) and nitrous oxide (N2O) by products. TiO2 coatings were deposited by magnetron sputtering onto barium titanate (BaTiO3) particulates for use within a packed bed dielectric barrier discharge reactor (DBD). The presence of titanium dioxide can affect the plasma chemistry in the DBD by acting as a sink for atomic oxygen, through photocatalytic formation of superoxide anion radical (O2-), and alteration of the dielectric constant of the BaTiO3 particulates. This work explains the complex interaction of these effects on oxygen and nitrogen plasma chemistry. The effect of the photocatalyst surface properties, gas composition and residence time on the reaction pathways for the formation of ozone and nitrogen oxides (NxOy) were investigated. The photocatalytic activity of titanium dioxide was improved by annealing the coated surface, and was subsequently found to enable the formation of ozone, increase the formation of N2O5 while significantly decreasing the formation of harmful NO2 and N2O with a residence time of 0.011

    Brucellosis remains a neglected disease inthe developing world: a call forinterdisciplinary action

    Get PDF
    Brucellosis places significant burdens on the human healthcare system and limits the economic growth of individuals, communities, and nations where such development is especially important to diminish the prevalence of poverty. The implementation of public policy focused on mitigating the socioeconomic effects of brucellosis in human and animal populations is desperately needed. When developing a plan to mitigate the associated consequences, it is vital to consider both the abstract and quantifiable effects. This requires an interdisciplinary and collaborative, or One Health, approach that consists of public education, the development of an infrastructure for disease surveillance and reporting in both veterinary and medical fields, and campaigns for control in livestock and wildlife species

    Growth factor restriction impedes progression of wound healing following cataract surgery: identification of VEGF as a putative therapeutic target

    Get PDF
    Secondary visual loss occurs in millions of patients due to a wound-healing response, known as posterior capsule opacification (PCO), following cataract surgery. An intraocular lens (IOL) is implanted into residual lens tissue, known as the capsular bag, following cataract removal. Standard IOLs allow the anterior and posterior capsules to become physically connected. This places pressure on the IOL and improves contact with the underlying posterior capsule. New open bag IOL designs separate the anterior capsule and posterior capsules and further reduce PCO incidence. It is hypothesised that this results from reduced cytokine availability due to greater irrigation of the bag. We therefore explored the role of growth factor restriction on PCO using human lens cell and tissue culture models. We demonstrate that cytokine dilution, by increasing medium volume, significantly reduced cell coverage in both closed and open capsular bag models. This coincided with reduced cell density and myofibroblast formation. A screen of 27 cytokines identified nine candidates whose expression profile correlated with growth. In particular, VEGF was found to regulate cell survival, growth and myofibroblast formation. VEGF provides a therapeutic target to further manage PCO development and will yield best results when used in conjunction with open bag IOL designs

    Quantitative cross-species extrapolation between humans and fish: The case of the anti-depressant fluoxetine

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Fish are an important model for the pharmacological and toxicological characterization of human pharmaceuticals in drug discovery, drug safety assessment and environmental toxicology. However, do fish respond to pharmaceuticals as humans do? To address this question, we provide a novel quantitative cross-species extrapolation approach (qCSE) based on the hypothesis that similar plasma concentrations of pharmaceuticals cause comparable target-mediated effects in both humans and fish at similar level of biological organization (Read-Across Hypothesis). To validate this hypothesis, the behavioural effects of the anti-depressant drug fluoxetine on the fish model fathead minnow (Pimephales promelas) were used as test case. Fish were exposed for 28 days to a range of measured water concentrations of fluoxetine (0.1, 1.0, 8.0, 16, 32, 64 μg/L) to produce plasma concentrations below, equal and above the range of Human Therapeutic Plasma Concentrations (HTPCs). Fluoxetine and its metabolite, norfluoxetine, were quantified in the plasma of individual fish and linked to behavioural anxiety-related endpoints. The minimum drug plasma concentrations that elicited anxiolytic responses in fish were above the upper value of the HTPC range, whereas no effects were observed at plasma concentrations below the HTPCs. In vivo metabolism of fluoxetine in humans and fish was similar, and displayed bi-phasic concentration-dependent kinetics driven by the auto-inhibitory dynamics and saturation of the enzymes that convert fluoxetine into norfluoxetine. The sensitivity of fish to fluoxetine was not so dissimilar from that of patients affected by general anxiety disorders. These results represent the first direct evidence of measured internal dose response effect of a pharmaceutical in fish, hence validating the Read-Across hypothesis applied to fluoxetine. Overall, this study demonstrates that the qCSE approach, anchored to internal drug concentrations, is a powerful tool to guide the assessment of the sensitivity of fish to pharmaceuticals, and strengthens the translational power of the cross-species extrapolation
    • …
    corecore