605 research outputs found

    Five-Year Follow-Up of Parapapillary Atrophy: The Beijing Eye Study

    Get PDF
    Purpose: To assess longitudinal changes in parapapillary atrophy in the adult population of Greater Beijing. Methods: The population-based Beijing Eye Study 2006 included 3251 subjects who had participated in the Beijing Eye Study 2001 and returned for re-examination. The mean age was 60.4610.1 years. Using optic disc photographs, we measured parapapillary atrophy which was divided into alpha zone and beta zone. Results: Overall progression rate of alpha zone was seen in 0.660.1 % (95 % confidence interval (CI):0.3,0.9) of the subjects and of beta zone in 8.260.5 % (95%CI:7.2,9.1) of the subjects. In binary regression analysis, rate of progression of alpha zone was significantly associated higher age (P = 0.04) and the co-progression of zone Beta (P,0.001). Rate of progression of beta zone was significantly associated with higher age (P,0.001; odds ratio (OR):1.11;95%CI:1.10,1.14), higher intraocular pressure (P,0.001;OR:1.10;95%CI:1.05,1.14), higher myopic refractive error (P,0.001;OR:0.71; 95%CI:0.67,0.75), rural region of habitation (P = 0.002;OR: 0.58; 95%CI:0.41,0.82), presence of glaucomatous optic nerve damage (P,0.001;OR:2.89; 95%CI:1.62,5.14), co-progression of alpha zone (P,0.001;OR:7.13;95%CI:2.43,20.9), absence of arterial hypertension (P = 0.03;OR: 0.70; 95%CI:0.51,0.96), and thicker central corneal thickness (P = 0.02;OR:1.01;95%CI:1.00,1.01). Subjects with a non-glaucomatous optic nerve damage (n = 22) as compared to the remaining subjects did not vary in the progression rate of alpha zone (0.0 % versus 0.660.1%; P = 1.0) and beta zone (8.260.5 % versus 6.360.6%;P = 1.0)

    Design and feasibility testing of a novel group intervention for young women who binge drink in groups

    Get PDF
    BackgroundYoung women frequently drink alcohol in groups and binge drinking within these natural drinking groups is common. This study describes the design of a theoretically and empirically based group intervention to reduce binge drinking among young women. It also evaluates their engagement with the intervention and the acceptability of the study methods.MethodsFriendship groups of women aged 18–35 years, who had two or more episodes of binge drinking (>6 UK units on one occasion; 48g of alcohol) in the previous 30 days, were recruited from the community. A face-to-face group intervention, based on the Health Action Process Approach, was delivered over three sessions. Components of the intervention were woven around fun activities, such as making alcohol free cocktails. Women were followed up four months after the intervention was delivered. Results The target of 24 groups (comprising 97 women) was recruited. The common pattern of drinking was infrequent, heavy drinking (mean consumption on the heaviest drinking day was UK 18.1 units). Process evaluation revealed that the intervention was delivered with high fidelity and acceptability of the study methods was high. The women engaged positively with intervention components and made group decisions about cutting down. Twenty two groups set goals to reduce their drinking, and these were translated into action plans. Retention of individuals at follow up was 87%.ConclusionsThis study successfully recruited groups of young women whose patterns of drinking place them at high risk of acute harm. This novel approach to delivering an alcohol intervention has potential to reduce binge drinking among young women. The high levels of engagement with key steps in the behavior change process suggests that the group intervention should be tested in a full randomised controlled trial

    Chapter 11: Challenges in and Principles for Conducting Systematic Reviews of Genetic Tests used as Predictive Indicators

    Get PDF
    In this paper, we discuss common challenges in and principles for conducting systematic reviews of genetic tests. The types of genetic tests discussed are those used to 1). determine risk or susceptibility in asymptomatic individuals; 2). reveal prognostic information to guide clinical management in those with a condition; or 3). predict response to treatments or environmental factors. This paper is not intended to provide comprehensive guidance on evaluating all genetic tests. Rather, it focuses on issues that have been of particular concern to analysts and stakeholders and on areas that are of particular relevance for the evaluation of studies of genetic tests. The key points include:The general principles that apply in evaluating genetic tests are similar to those for other prognostic or predictive tests, but there are differences in how the principles need to be applied or the degree to which certain issues are relevant.A clear definition of the clinical scenario and an analytic framework is important when evaluating any test, including genetic tests.Organizing frameworks and analytic frameworks are useful constructs for approaching the evaluation of genetic tests.In constructing an analytic framework for evaluating a genetic test, analysts should consider preanalytic, analytic, and postanalytic factors; such factors are useful when assessing analytic validity.Predictive genetic tests are generally characterized by a delayed time between testing and clinically important events.Finding published information on the analytic validity of some genetic tests may be difficult. Web sites (FDA or diagnostic companies) and gray literature may be important sources.In situations where clinical factors associated with risk are well characterized, comparative effectiveness reviews should assess the added value of using genetic testing along with known factors compared with using the known factors alone.For genome-wide association studies, reviewers should determine whether the association has been validated in multiple studies to minimize both potential confounding and publication bias. In addition, reviewers should note whether appropriate adjustments for multiple comparisons were used

    Downregulation of miR-92a Is Associated with Aggressive Breast Cancer Features and Increased Tumour Macrophage Infiltration

    Get PDF
    BACKGROUND: MicroRNAs are small non-coding RNAs involved in the regulation of gene expression on a posttranscriptional level. These regulatory RNAs have been implicated in numerous cellular processes and are further deregulated in different cancer types, including breast cancer. MiR-92a is part of the miR-17∼92 cluster, which was first reported to be linked to tumourigenesis. However, little is known about the expression of miR-92a in breast cancer and potential associations to tumour properties. The expression of miR-92a was therefore characterized in 144 invasive breast cancer samples using in situ hybridization and related to clinico-pathological data as well as to selected key properties of the tumour stroma, including the presence of macrophages (CD68) and cancer activated fibroblasts (alpha-SMA). METHODOLOGY/PRINCIPAL FINDINGS: To measure miR-92a levels, an in situ hybridisation protocol was developed and validated using cell lines and miR-92a inhibitors. The expression in the tumour samples was objectively evaluated using digital image analysis program subtracting background activities. We found that the miR-92a expression varied between tumours and was inversely correlated to tumour grade (r = -0.276, p = 0.003) and recurrence-free survival (p = 0.008) and provided independent prognostic information in multivariate Cox analysis (HR: 0.375, CI: 0.145-0.972, p = 0.043). MiR-92a was moreover inversely correlated to the number of infiltrating macrophages in the tumour stroma (r = -0.357, p<0.001), and downregulation of miR-92a promoted cell migration (p<0.01). CONCLUSIONS/SIGNIFICANCE: This study demonstrates that downregulation of miR-92a in breast cancer is linked to key epithelial and stromal properties as well as clinical outcome

    Reproducibility of in-vivo OCT measured three-dimensional human lamina cribrosa microarchitecture

    Get PDF
    Purpose: To determine the reproducibility of automated segmentation of the three-dimensional (3D) lamina cribrosa (LC) microarchitecture scanned in-vivo using optical coherence tomography (OCT). Methods: Thirty-nine eyes (8 healthy, 19 glaucoma suspects and 12 glaucoma) from 49 subjects were scanned twice using swept-source (SS-) OCT in a 3.5x3.5x3.64 mm (400x400x896 pixels) volume centered on the optic nerve head, with the focus readjusted after each scan. The LC was automatically segmented and analyzed for microarchitectural parameters, including pore diameter, pore diameter standard deviation (SD), pore aspect ratio, pore area, beam thickness, beam thickness SD, and beam thickness to pore diameter ratio. Reproducibility of the parameters was assessed by computing the imprecision of the parameters between the scans. Results: The automated segmentation demonstrated excellent reproducibility. All LC microarchitecture parameters had an imprecision of less or equal to 4.2%. There was little variability in imprecision with respect to diagnostic category, although the method tends to show higher imprecision amongst healthy subjects. Conclusion: The proposed automated segmentation of the LC demonstrated high reproducibility for 3D LC parameters. This segmentation analysis tool will be useful for in-vivo studies of the LC. © 2014 Wang et al

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    Impairment of the Plasmodium falciparum Erythrocytic Cycle Induced by Angiotensin Peptides

    Get PDF
    Plasmodium falciparum causes the most serious complications of malaria and is a public health problem worldwide with over 2 million deaths each year. The erythrocyte invasion mechanisms by Plasmodium sp. have been well described, however the physiological aspects involving host components in this process are still poorly understood. Here, we provide evidence for the role of renin-angiotensin system (RAS) components in reducing erythrocyte invasion by P. falciparum. Angiotensin II (Ang II) reduced erythrocyte invasion in an enriched schizont culture of P. falciparum in a dose-dependent manner. Using mass spectroscopy, we showed that Ang II was metabolized by erythrocytes to Ang IV and Ang-(1–7). Parasite infection decreased Ang-(1–7) and completely abolished Ang IV formation. Similar to Ang II, Ang-(1–7) decreased the level of infection in an A779 (specific antagonist of Ang-(1–7) receptor, MAS)-sensitive manner. 10−7 M PD123319, an AT2 receptor antagonist, partially reversed the effects of Ang-(1–7) and Ang II. However, 10−6 M losartan, an antagonist of the AT1 receptor, had no effect. Gs protein is a crucial player in the Plasmodium falciparum blood cycle and angiotensin peptides can modulate protein kinase A (PKA) activity; 10−8 M Ang II or 10−8 M Ang-(1–7) inhibited this activity in erythrocytes by 60% and this effect was reversed by 10−7 M A779. 10−6 M dibutyryl-cAMP increased the level of infection and 10−7 M PKA inhibitor decreased the level of infection by 30%. These results indicate that the effect of Ang-(1–7) on P. falciparum blood stage involves a MAS-mediated PKA inhibition. Our results indicate a crucial role for Ang II conversion into Ang-(1–7) in controlling the erythrocytic cycle of the malaria parasite, adding new functions to peptides initially described to be involved in the regulation of vascular tonus

    Impairment of the Plasmodium falciparum Erythrocytic Cycle Induced by Angiotensin Peptides

    Get PDF
    Plasmodium falciparum causes the most serious complications of malaria and is a public health problem worldwide with over 2 million deaths each year. The erythrocyte invasion mechanisms by Plasmodium sp. have been well described, however the physiological aspects involving host components in this process are still poorly understood. Here, we provide evidence for the role of renin-angiotensin system (RAS) components in reducing erythrocyte invasion by P. falciparum. Angiotensin II (Ang II) reduced erythrocyte invasion in an enriched schizont culture of P. falciparum in a dose-dependent manner. Using mass spectroscopy, we showed that Ang II was metabolized by erythrocytes to Ang IV and Ang-(1–7). Parasite infection decreased Ang-(1–7) and completely abolished Ang IV formation. Similar to Ang II, Ang-(1–7) decreased the level of infection in an A779 (specific antagonist of Ang-(1–7) receptor, MAS)-sensitive manner. 10−7 M PD123319, an AT2 receptor antagonist, partially reversed the effects of Ang-(1–7) and Ang II. However, 10−6 M losartan, an antagonist of the AT1 receptor, had no effect. Gs protein is a crucial player in the Plasmodium falciparum blood cycle and angiotensin peptides can modulate protein kinase A (PKA) activity; 10−8 M Ang II or 10−8 M Ang-(1–7) inhibited this activity in erythrocytes by 60% and this effect was reversed by 10−7 M A779. 10−6 M dibutyryl-cAMP increased the level of infection and 10−7 M PKA inhibitor decreased the level of infection by 30%. These results indicate that the effect of Ang-(1–7) on P. falciparum blood stage involves a MAS-mediated PKA inhibition. Our results indicate a crucial role for Ang II conversion into Ang-(1–7) in controlling the erythrocytic cycle of the malaria parasite, adding new functions to peptides initially described to be involved in the regulation of vascular tonus

    Mechanical Strain Stabilizes Reconstituted Collagen Fibrils against Enzymatic Degradation by Mammalian Collagenase Matrix Metalloproteinase 8 (MMP-8)

    Get PDF
    Collagen, a triple-helical, self-organizing protein, is the predominant structural protein in mammals. It is found in bone, ligament, tendon, cartilage, intervertebral disc, skin, blood vessel, and cornea. We have recently postulated that fibrillar collagens (and their complementary enzymes) comprise the basis of a smart structural system which appears to support the retention of molecules in fibrils which are under tensile mechanical strain. The theory suggests that the mechanisms which drive the preferential accumulation of collagen in loaded tissue operate at the molecular level and are not solely cell-driven. The concept reduces control of matrix morphology to an interaction between molecules and the most relevant, physical, and persistent signal: mechanical strain.The investigation was carried out in an environmentally-controlled microbioreactor in which reconstituted type I collagen micronetworks were gently strained between micropipettes. The strained micronetworks were exposed to active matrix metalloproteinase 8 (MMP-8) and relative degradation rates for loaded and unloaded fibrils were tracked simultaneously using label-free differential interference contrast (DIC) imaging. It was found that applied tensile mechanical strain significantly increased degradation time of loaded fibrils compared to unloaded, paired controls. In many cases, strained fibrils were detectable long after unstrained fibrils were degraded.In this investigation we demonstrate for the first time that applied mechanical strain preferentially preserves collagen fibrils in the presence of a physiologically-important mammalian enzyme: MMP-8. These results have the potential to contribute to our understanding of many collagen matrix phenomena including development, adaptation, remodeling and disease. Additionally, tissue engineering could benefit from the ability to sculpt desired structures from physiologically compatible and mutable collagen
    corecore