21,586 research outputs found
Integrating photovoltaic cells into decorative architectural glass using traditonal glasspainting techniques and fluorescent dyes
Photovoltaic cells can be integrated into decorative glass, providing a showcase for this renewable technology,
whilst assisting in the creation of sustainable architecture through generation of electricity from the building surface. However, traditional, opaque, square, crystalline-silicon solar cells contrast strongly with their
surroundings when incorporated into translucent, coloured glazing. Methods of blending photovoltaic cells into
their surroundings were developed, using traditional glass painting techniques. A design was created in which
opaque paint was applied to the areas of glass around underlying photovoltaic cells. Translucent, platinum paint
was used on the glass behind the photovoltaic cells. This covered the grey cell backs whilst reflecting light and
movement. The platinum paint was shown to cause a slight increase in power produced by photovoltaic cells
placed above it. To add colour, very small amounts of Lumogen F dye (BASF) were incorporated into a silicone
encapsulant (Dow Corning, Sylgard 184), which was then used hold photovoltaic cells in place between sheets of
painted glass. Lumogen dyes selectively absorb and emit light, giving a good balance between colour addition
and electricity production from underlying photovoltaic cells. When making sufficient quantities of dyed
encapsulant for a 600 x 450 mm test piece, the brightness of the dye colours faded, and fluorescence decreased,
although some colour was retained. Improvement of the method, including testing of alternative encapsulant
materials, is required, to ensure that the dyes continue to fluoresce within the encapsulant. In contrast, the
methods of adding opacity variation to glass, through use of glass painting, are straightforward to develop for use
in a wide variety of photovoltaic installations. Improvement of these methods opens up a wide variety of
architectural glass design opportunities with integrated photovoltaics, providing an example of one new medium
to make eco-architecture more aesthetically pleasing, whilst generating electricity
Effects of rituximab-based B-cell depletion therapy on skin manifestations of lupus erythematosus--report of 17 cases and review of the literature
Cutaneous manifestations occur frequently in systemic lupus erythematosus (SLE) and are pathognomonic in subacute-cutaneous lupus erythematosus (SCLE) and chronic cutaneous lupus erythematosus (CCLE). Although B-cell depletion therapy (BCDT) has demonstrated efficacy in SLE with visceral involvement, its usefulness for patients with predominant skin manifestations has not been fully established. In this single-centre, retrospective study 14 consecutive SLE, one CCLE and two SCLE patients with recalcitrant skin involvement were treated with 2 × rituximab 1 g, and 1 × cyclophosphamide 750 mg. Six months after BCDT, nine of 17 (53%) patients were in complete (CR) or partial remission (PR). Relapses occurred in 12 patients (71%) at a mean time of 10 ± 1.8 months after BCDT. A second cycle of BCDT achieved a more sustained remission in seven of nine patients (78%) lasting for a mean time of 18.4 ± 2.7 months. Minor adverse events were experienced by three patients. Mean follow-up was 30 months. Our own results and the literature review demonstrate that BCDT based on rituximab is well tolerated and may be effective for cutaneous lesions of lupus erythematosus. Randomized controlled trials are necessary to further evaluate the value of BCDT for this group of patients
Recommended from our members
Creative use of BIPV materials: barriers and solutions
Inventive use of photovoltaic (PV) materials in architecture can be developed through use of PV in artworks. This is particularly important in increasing the uptake of building-integrated building-integrated photovoltaics (BIPV), by developing novel methods of combining and installing PV materials. Current examples of PV artwork and design are examined, from small to large scale, to assess the current design limitations. The design of two PV artworks is discussed in detail, including an artwork that uses the principle of the luminescent solar concentrator (LSC), to show the way in which design hurdles are discovered and overcome. Challenges range from difficulties in obtaining small quantities of PV materials; the balance between efficiency and artistic effect; through to technical and siting issues that an artist must address when designing a functional PV structure. Methods of overcoming these barriers are explored, including the use of lumogen dyes in encapsulant materials
Gyne and drone production in bombus atratus (Hymenoptera: Apidae)
For over a decade, our research group has studied the biology of the native bumblebee, Bombus atratus, to investigate the feasibility of using it to pollinate crops such as tomato, strawberry, blackberry and peppers. Traditionally, captive breeding has depended on the use of captured wild queens to initiate the colonies. The goal of the current work is to investigate conditions required to produce new queens and drones in captivity. In this study, 31 colonies were evaluated under either greenhouse or open field conditions over a 15 month period. A total of 1492 drones (D) and 737 gynes (G, i.e., virgin queens) were produced by all colonies, with 16 colonies producing both drones and gynes (D&G), 11 producing only drones (D) and 4 producing neither. Some of the D&G colonies had more than one sexual phase, but no colonies produced exclusively gynes. More drones and fewer gynes were produced per colony under greenhouse conditions with the highest number of drones produced by D&G colonies. The numbers of immature stages per cell declined in colonies as increasingly more resources were allocated to the production of gynes and the maintenance of increased nest temperature
Recommended from our members
A silicone host for Lumogen dyes
Altering the encapsulant colour in photovoltaic (PV) modules is a straightforward way of achieving greater colour range whilst minimising additional cost in PV systems. Lumogen fluorescent, organic dyes offer a way of adding colour to the encapsulant with minimal change in efficiency. The silicone encapsulant material Sylgard 184 is tested as a host material for Lumogen dyes. A method of dissolving various Lumogen dyes in Sylgard is investigated, and limits of solubility are explored. Methods of preparing samples suitable for optical measurements are found. Optical density is measured for a range of dye concentrations. The results indicate that Lumogen dyes can be dissolved successfully within Sylgard 184, giving good optical properties for lower dye concentrations. Initial photoluminescent quantum yield measurements confirm that Lumogen dyes can function effectively within a Sylgard host. This is promising for use of this material combination in the creation of coloured, fluorescent PV encapsulant layers
Recommended from our members
The search for building-integrated PV materials with good aesthetic potential: a survey
Building-integrated photovoltaics (PV) is currently dominated by blue and black rectilinear forms. Greater variety of colour and form could lead to much better uptake of PV in the built environment, also increasing the potential for PV to be used as an artistic material. Listing the available PV technologies by colour gives a clearer picture of the current situation. An assessment of photostability, efficiency and price, for each material, indicates the materials that have the potential to fill the gaps in the colour spectrum. Use of combinations of materials that can be fabricated in different ways from the current, standardised, PV modules will further increase the possibilities for use in building integration, Extending the lifetimes of organic PV, dye-sensitised PV or luminescent solar concentrators will increase the possibilities for development of new PV products
Adenovirus-mediated gene transfer to liver grafts: An improved method to maximize infectivity
Background. Adenoviral gene therapy in liver transplantation has many potential applications, but current vector delivery methods to grafts lack efficiency and require high titers. In this study, we attempted to improve gene delivery efficacy using three different delivery methods to liver grafts with adenoviral vector encoding the LacZ marker gene (AdLacZ). Methods. AdLacZ was delivered to cold preserved rat liver grafts by: (1) continuous perfusion via the portal vein (portal perfusion), (2) continuous perfusion via both the portal vein and hepatic artery (dual perfusion), and (3) trapping viral perfusate in the liver vasculature by clamping outflow (clamp technique). Results. Using 1x109 plaque-forming units of Ad-LacZ (multiplicity of infection of 0.4), transduction rate in 3-hr preserved liver grafts, determined by 5-bromo-4-chromo-3-indolyl-β-D-galactopyranoside staining and β-galactosidase assay 48 hr after transplantation, was best with clamp technique (21.5±2.7% 5-bromo-4-chromo-3-indolyl-β-D- galactopyranoside-positive cells and 81.1±3.6 U/g β-galactosidase), followed by dual perfusion (18.5±1.8%, 66.6±19.4 U/g) and portal perfusion (8.8±2.5%, 19.7±15.4 U/g). Further studies using clamp technique demonstrated a near-maximal gene transfer rate of 30% at multiplicity of infection of 0.4 with prolonged cold ischemia to 18 hr. Transgene expression was stable for 2 weeks and slowly declined to 7.8±12.1% at day 28. Lack of inflammatory response was confirmed by histopathological examination and liver enzymes. Transduction was selectively induced in hepatocytes with nearly no extrahepatic transgene expression in the lung and spleen. Conclusions. The clamp technique provides a highly efficient viral gene delivery method to cold preserved liver grafts. This method offers maximal infectivity of adenoviral vector with minimal technical manipulation
Improving the aesthetics of photovoltaics in decorative architectural glass
Increasing colour variety in photovoltaics can improve the uptake of this renewable technology, which is vital to the creation of sustainable architecture. However, the introduction of colour into photovoltaics often involves increased cost and decreased efficiency. A method was found to add colour to photovoltaics, using luminescent materials: fluorescent organic dyes (BASF Lumogen). These selectively absorb and emit light, giving a good balance between colour addition and electricity production from underlying photovoltaic cells. Very small amounts of Lumogen dye were added to a silicone encapsulant (Dow Corning Sylgard 184), which was then used hold photovoltaic cells in place between sheets of painted glass. When making sufficient quantities of dyed encapsulant for a 600 x 450 mm testpiece, the dye colours faded, with low levels of fluorescence, although some colour was retained. Improvement of the method, including testing of alternative encapsulant materials, is required, to ensure that the dyes continue to fluoresce within the encapsulant. Although the Lumogen dyes are quite stable when compared to other dye molecules, in general organic dyes are not yet sufficiently durable to make this technology viable for installations that are to last for more than 20 years: the guaranteed lifetime of standard photovoltaic modules. Dye replenishment, or replacement of materials, will be required; or a product with a shorter ‘useful’ lifetime identified. This method opens up a wide variety of architectural glass design opportunities that incorporate photovoltaics, providing an example of one new medium to make eco-architecture more aesthetically pleasing, whilst generating electricity
Current pharmacological treatment of idiopathic inflammatory myopathies
The idiopathic inflammatory myopathies are uncommon and heterogeneous disorders. Their classification is based on distinct clinicopathologic features. Although idiopathic inflammatory myopathies share some similarities, different subtypes may have variable responses to therapy, so it is very important to distinguish the correct subtype.
There are few randomised, double blind placebo controlled studies to support the current treatment. High dose corticosteroids continue to be the first-line therapy and other immunosupressive drugs are used in refractory cases, as well as steroid-sparing agents.
Some novel therapeutic approaches have emerged as potential treatment including tacrolimus, intravenous immunoglobulin and rituximab, following good outcomes reported in case studies. However, more randomised controlled trials are needed.
This review considers the current and the potential future therapies for inflammatory myopathies
Spud 1.0: generalising and automating the user interfaces of scientific computer models
The interfaces by which users specify the scenarios to be simulated by scientific computer models are frequently primitive, under-documented and ad-hoc text files which make using the model in question difficult and error-prone and significantly increase the development cost of the model. In this paper, we present a model-independent system, Spud, which formalises the specification of model input formats in terms of formal grammars. This is combined with an automated graphical user interface which guides users to create valid model inputs based on the grammar provided, and a generic options reading module, libspud, which minimises the development cost of adding model options. <br><br> Together, this provides a user friendly, well documented, self validating user interface which is applicable to a wide range of scientific models and which minimises the developer input required to maintain and extend the model interface
- …