2,528 research outputs found

    Characterization of volatile organic compounds at a roadside environment in Hong Kong: An investigation of influences after air pollution control strategies

    Get PDF
    Vehicular emission is one of the important anthropogenic pollution sources for volatile organic compounds (VOCs). Four characterization campaigns were conducted at a representative urban roadside environment in Hong Kong between May 2011 and February 2012. Carbon monoxide (CO) and VOCs including methane (CH4), non-methane hydrocarbons (NMHCs), halocarbons, and alkyl nitrates were quantified. Both mixing ratios and compositions of the target VOCs show ignorable seasonal variations. Except CO, liquefied petroleum gas (LPG) tracers of propane, i-butane and n-butane are the three most abundant VOCs, which increased significantly as compared with the data measured at the same location in 2003. Meanwhile, the mixing ratios of diesel- and gasoline tracers such as ethyne, alkenes, aromatics, halogenated, and nitrated hydrocarbons decreased by at least of 37%. The application of advanced multivariate receptor modeling technique of positive matrix factorization (PMF) evidenced that the LPG fuel consumption is the largest pollution source, accounting for 60 ± 5% of the total quantified VOCs at the roadside location. The sum of ozone formation potential (OFP) for the target VOCs was 300.9 μg-O3 m-3, which was 47% lower than the value of 567.3 μg-O3 m-3 measured in 2003. The utilization of LPG as fuel in public transport (i.e., taxis and mini-buses) contributed 51% of the sum of OFP, significantly higher than the contributions from gasoline- (16%) and diesel-fueled (12%) engine emissions. Our results demonstrated the effectiveness of the switch from diesel to LPG-fueled engine for taxis and mini-buses implemented by the Hong Kong Special Administrative Region (HKSAR) Government between the recent ten years, in additional to the execution of substitution to LPG-fueled engine and restrictions of the vehicular emissions in compliance with the updated European emission standards

    Learning a Mixture of Deep Networks for Single Image Super-Resolution

    Full text link
    Single image super-resolution (SR) is an ill-posed problem which aims to recover high-resolution (HR) images from their low-resolution (LR) observations. The crux of this problem lies in learning the complex mapping between low-resolution patches and the corresponding high-resolution patches. Prior arts have used either a mixture of simple regression models or a single non-linear neural network for this propose. This paper proposes the method of learning a mixture of SR inference modules in a unified framework to tackle this problem. Specifically, a number of SR inference modules specialized in different image local patterns are first independently applied on the LR image to obtain various HR estimates, and the resultant HR estimates are adaptively aggregated to form the final HR image. By selecting neural networks as the SR inference module, the whole procedure can be incorporated into a unified network and be optimized jointly. Extensive experiments are conducted to investigate the relation between restoration performance and different network architectures. Compared with other current image SR approaches, our proposed method achieves state-of-the-arts restoration results on a wide range of images consistently while allowing more flexible design choices. The source codes are available in http://www.ifp.illinois.edu/~dingliu2/accv2016

    Correction: Having a Lot of a Good Thing: Multiple Important Group Memberships as a Source of Self-Esteem

    Get PDF
    This is the final version of the article. Available from Public Library of Science via the DOI in this record.This is the correction to Jetten J, Branscombe NR, Haslam SA, Haslam C, Cruwys T, Jones JM, et al. (2015) Having a Lot of a Good Thing: Multiple Important Group Memberships as a Source of Self-Esteem. PLoS ONE 10(5): e0124609. doi:10.1371/journal.pone.0124609The original article for which this is the correction is in ORE at http://hdl.handle.net/10871/26622

    Regional aerosol deposition in the human airways: the SimInhale benchmark case and a critical assessment of in silico methods

    Get PDF
    Regional deposition effects are important in the pulmonary delivery of drugs intended for the topical treatment of respiratory ailments. They also play a critical role in the systemic delivery of drugs with limited lung bioavailability. In recent years, significant improvements in the quality of pulmonary imaging have taken place, however the resolution of current imaging modalities remains inadequate for quantifying regional deposition. Computational Fluid-Particle Dynamics (CFPD) can fill this gap by providing detailed information about regional deposition in the extrathoracic and conducting airways. It is therefore not surprising that the last 15 years have seen an exponential growth in the application of CFPD methods in this area. Survey of the recent literature however, reveals a wide variability in the range of modelling approaches used and in the assumptions made about important physical processes taking place during aerosol inhalation. The purpose of this work is to provide a concise critical review of the computational approaches used to date, and to present a benchmark case for validation of future studies in the upper airways. In the spirit of providing the wider community with a reference for quality assurance of CFPD studies, in vitro deposition measurements have been conducted in a human-based model of the upper airways, and several groups within MP1404 SimInhale have computed the same case using a variety of simulation and discretization approaches. Here, we report the results of this collaborative effort and provide a critical discussion of the performance of the various simulation methods. The benchmark case, in vitro deposition data and in silico results will be published online and made available to the wider community. Particle image velocimetry measurements of the flow, as well as additional numerical results from the community, will be appended to the online database as they become available in the future

    Zika virus impairs the development of blood vessels in a mouse model of congenital infection

    Get PDF
    Zika virus (ZIKV) is associated with brain development abnormalities such as primary microcephaly, a severe reduction in brain growth. Here we demonstrated in vivo the impact of congenital ZIKV infection in blood vessel development, a crucial step in organogenesis. ZIKV was injected intravenously in the pregnant type 2 interferon (IFN)-deficient mouse at embryonic day (E) 12.5. The embryos were collected at E15.5 and postnatal day (P)2. Immunohistochemistry for cortical progenitors and neuronal markers at E15.5 showed the reduction of both populations as a result of ZIKV infection. Using confocal 3D imaging, we found that ZIKV infected brain sections displayed a reduction in the vasculature density and vessel branching compared to mocks at E15.5; altogether, cortical vessels presented a comparatively immature pattern in the infected tissue. These impaired vascular patterns were also apparent in the placenta and retina. Moreover, proteomic analysis has shown that angiogenesis proteins are deregulated in the infected brains compared to controls. At P2, the cortical size and brain weight were reduced in comparison to mock-infected animals. In sum, our results indicate that ZIKV impairs angiogenesis in addition to neurogenesis during development. The vasculature defects represent a limitation for general brain growth but also could regulate neurogenesis directly

    Sequence Variants of the Phytophthora sojae RXLR Effector Avr3a/5 Are Differentially Recognized by Rps3a and Rps5 in Soybean

    Get PDF
    The perception of Phytophthora sojae avirulence (Avr) gene products by corresponding soybean resistance (Rps) gene products causes effector triggered immunity. Past studies have shown that the Avr3a and Avr5 genes of P. sojae are genetically linked, and the Avr3a gene encoding a secreted RXLR effector protein was recently identified. We now provide evidence that Avr3a and Avr5 are allelic. Genetic mapping data from F2 progeny indicates that Avr3a and Avr5 co-segregate, and haplotype analysis of P. sojae strain collections reveal sequence and transcriptional polymorphisms that are consistent with a single genetic locus encoding Avr3a/5. Transformation of P. sojae and transient expression in soybean were performed to test how Avr3a/5 alleles interact with soybean Rps3a and Rps5. Over-expression of Avr3a/5 in a P. sojae strain that is normally virulent on Rps3a and Rps5 results in avirulence to Rps3a and Rps5; whereas silencing of Avr3a/5 causes gain of virulence in a P. sojae strain that is normally avirulent on Rps3a and Rps5 soybean lines. Transient expression and co-bombardment with a reporter gene confirms that Avr3a/5 triggers cell death in Rps5 soybean leaves in an appropriate allele-specific manner. Sequence analysis of the Avr3a/5 gene identifies crucial residues in the effector domain that distinguish recognition by Rps3a and Rps5

    Emergent versus delayed lithotripsy for obstructing ureteral stones: a cumulative analysis of comparative studies

    Get PDF
    Objective To analyze the current evidence on the use of ureteroscopy (URS) and extracorporeal shock wave lithotripsy (ESWL) for the management of obstructing ureteral stones in emergent setting. Methods A systematic literature review was performed up to June 2016 using Pubmed and Ovid databases to identify pertinent studies. The PRISMA criteria were followed for article selection. Separate searches were done using a combinations of several search terms: "laser lithotripsy", "ureteroscopy", "extracorporeal shock wave lithotripsy", "ESWL", "rapid", "immediate", "early", "delayed", "late", "ureteral stones", "kidney stones", "renal stones". Only titles related to emergent/rapid/immediate/early (as viably defined in each study) versus delayed/late treatment of ureteral stones with either URS and/or ESWL were considered for screening. Demographics and operative outcomes were compared between emergent and delayed lithotripsy. RevMan review manager software was used to perform data analysis. Results Four studies comparing emergent (n = 526) versus delayed (n = 987) URS and six studies comparing emergent (n = 356) versus delayed (n = 355) SWL were included in the analysis. Emergent URS did not show any significant difference in terms of stone-free rate (91.2 versus 90.9%; OR 1.04; CI 0.71, 1.52; p = 0.84), complication rate (8.7% for emergent versus 11.5% for delayed; OR 0.94; CI 0.65, 1.36; p = 0.74) and need for auxiliary procedures (OR 0.85; CI 0.42, 1.7; p = 0.85) when compared to delayed URS. Emergent ESWL was associated with a higher likelihood of stone free status (OR 2.2; CI 1.55, 3.17; p < 0.001) and a lower likelihood of need for auxiliary maneuvers (OR 0.49; CI 0.33, 0.72; p < 0.001) than the delayed procedure. No differences in complication rates were noticed between the emergent and delayed ESWL (p = 0.37). Conclusions Emergent lithotripsy, either ureteroscopic or extracorporeal, can be offered as an effective and safe treatment for patients with symptomatic ureteral stone. If amenable to ESWL, based on stone and patient characteristics, an emergent approach should be strongly considered. Ureteroscopy in the emergent setting is mostly reserved for distally located stones. The implementation of these therapeutic approaches is likely to be dictated by their availability.info:eu-repo/semantics/publishedVersio

    iPSC-derived mesenchymal stem cells exert SCF-dependent recovery of cigarette smoke-induced apoptosis/proliferation imbalance in airway cells

    Get PDF
    Mesenchymal stem cells (MSCs) have emerged as a potential cell‐based therapy for pulmonary emphysema in animal models. Our previous study demonstrated that human induced pluripotent stem cell–derived MSCs (iPSC‐MSCs) were superior over bone marrow–derived MSCs (BM‐MSCs) in attenuating cigarette smoke (CS)‐induced airspace enlargement possibly through mitochondrial transfer. This study further investigated the effects of iPSC‐MSCs on inflammation, apoptosis, and proliferation in a CS‐exposed rat model and examined the effects of the secreted paracrine factor from MSCs as another possible mechanism in an in vitro model of bronchial epithelial cells. Rats were exposed to 4% CS for 1 hr daily for 56 days. At days 29 and 43, human iPSC‐MSCs or BM‐MSCs were administered intravenously. We observed significant attenuation of CS‐induced elevation of circulating 8‐isoprostane and cytokine‐induced neutrophil chemoattractant‐1 after iPSC‐MSC treatment. In line, a superior capacity of iPSC‐MSCs was also observed in ameliorating CS‐induced infiltration of macrophages and neutrophils and apoptosis/proliferation imbalance in lung sections over BM‐MSCs. In support, the conditioned medium (CdM) from iPSC‐MSCs ameliorated CS medium‐induced apoptosis/proliferation imbalance of bronchial epithelial cells in vitro. Conditioned medium from iPSC‐MSCs contained higher level of stem cell factor (SCF) than that from BM‐MSCs. Deprivation of SCF from iPSC‐MSC‐derived CdM led to a reduction in anti‐apoptotic and pro‐proliferative capacity. Taken together, our data suggest that iPSC‐MSCs may possess anti‐apoptotic/pro‐proliferative capacity in the in vivo and in vitro models of CS‐induced airway cell injury partly through paracrine secretion of SCF.published_or_final_versio

    Formyl Peptide Receptor as a Novel Therapeutic Target for Anxiety-Related Disorders

    Get PDF
    Formyl peptide receptors (FPR) belong to a family of sensors of the immune system that detect microbe-associated molecules and inform various cellular and sensorial mechanisms to the presence of pathogens in the host. Here we demonstrate that Fpr2/3-deficient mice show a distinct profile of behaviour characterised by reduced anxiety in the marble burying and light-dark box paradigms, increased exploratory behaviour in an open-field, together with superior performance on a novel object recognition test. Pharmacological blockade with a formyl peptide receptor antagonist, Boc2, in wild type mice reproduced most of the behavioural changes observed in the Fpr2/3(-/-) mice, including a significant improvement in novel object discrimination and reduced anxiety in a light/dark shuttle test. These effects were associated with reduced FPR signalling in the gut as shown by the significant reduction in the levels of p-p38. Collectively, these findings suggest that homeostatic FPR signalling exerts a modulatory effect on anxiety-like behaviours. These findings thus suggest that therapies targeting FPRs may be a novel approach to ameliorate behavioural abnormalities present in neuropsychiatric disorders at the cognitive-emotional interface

    Mammalian interspecies substitution of immune modulatory alleles by genome editing

    Get PDF
    We describe a fundamentally novel feat of animal genetic engineering: the precise and efficient substitution of an agronomic haplotype into a domesticated species. Zinc finger nuclease in-embryo editing of the RELA locus generated live born domestic pigs with the warthog RELA orthologue, associated with resilience to African Swine Fever. The ability to efficiently achieve interspecies allele introgression in one generation opens unprecedented opportunities for agriculture and basic research
    corecore