214 research outputs found
Pneumococcal colonization in healthy adult research participants in the conjugate vaccine era, United Kingdom, 2010-2017.
Pneumococcal colonization is rarely studied in adults, except as part of family surveys. We report the outcomes of colonization screening in healthy adults (non-smokers without major comorbidities or contact with children under five years) who had volunteered to take part in clinical research. Using nasal wash culture, we detected colonization in 6.5% (52/795) of volunteers. Serotype 3 was the commonest serotype (10/52). The majority of the remainder (35/52) were non-vaccine serotypes, but we also identified persistent circulation of serotypes 19A and 19F. Resistance to at least one of six antibiotics tested was found in 8/52 isolates
Comparison of atomic layer deposited Al2O3 and (Ta2O5)0.12(Al2O3)0.88 gate dielectrics on the characteristics of GaN-capped AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors
The current research investigates the potential advantages of replacing Al2O3 with (Ta2O5)0.12(Al2O3)0.88 as a higher dielectric constant (κ) gate dielectric for GaN-based metal-oxide-semiconductor high electron mobility transistors (MOS-HEMTs). The electrical characteristics of GaN-capped AlGaN/GaN MOS-HEMT devices with (Ta2O5)0.12(Al2O3)0.88 as the gate dielectric are compared to devices with Al2O3 gate dielectric and devices without any gate dielectric (Schottky HEMTs). Compared to the Al2O3 MOS-HEMT, the (Ta2O5)0.12(Al2O3)0.88 MOS-HEMT achieves a larger capacitance and a smaller absolute threshold voltage, together with a higher two-dimensional electron gas carrier concentration. This results in a superior improvement of the output characteristics with respect to the Schottky HEMT, with higher maximum and saturation drain current values observed from DC current-voltage measurements. Gate transfer measurements also show a higher transconductance for the (Ta2O5)0.12(Al2O3)0.88 MOS-HEMT. Furthermore, from OFF-state measurements, the (Ta2O5)0.12(Al2O3)0.88 MOS-HEMT shows a larger reduction of the gate leakage current in comparison to the Al2O3 MOS-HEMT. These results demonstrate that the increase in κ of (Ta2O5)0.12(Al2O3)0.88 compared with Al2O3 leads to enhanced device performance when the ternary phase is used as a gate dielectric in the GaN-based MOS-HEMT
Leadership in strategic information (LSI) building skilled public health capacity in Ethiopia
<p>Abstract</p> <p>Background</p> <p>In many developing countries, including Ethiopia, few have the skills to use data for effective decision making in public health. To address this need, the U.S. Centers for Disease Control and Prevention (CDC), in collaboration with two local Ethiopian organizations, developed a year long Leadership in Strategic Information (LSI) course to train government employees working in HIV to use data from strategic information sources. A process evaluation of the LSI course examined the impact of the training on trainees' skills and the strengths and weaknesses of the course. The evaluation consisted of surveys and focus groups.</p> <p>Findings</p> <p>Trainees' skill sets increased in descriptive and analytic epidemiology, surveillance, and monitoring and evaluation (M and E). Data from the evaluation indicated that the course structure and the M and E module required revision in order to improve outcomes. Additionally, the first cohort had a high attrition rate. Overall, trainees and key stakeholders viewed LSI as important in building skilled capacity in public health in Ethiopia.</p> <p>Conclusion</p> <p>The evaluation provided constructive insight in modifying the course to improve retention and better address trainees' learning needs. Subsequent course attrition rates decreased as a result of changes made based on evaluation findings.</p
Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015
SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation
Sex-dimorphism in Cardiac Nutrigenomics: effect of Trans fat and/or Monosodium Glutamate consumption
<p>Abstract</p> <p>Background</p> <p>A paucity of information on biological sex-specific differences in cardiac gene expression in response to diet has prompted this present nutrigenomics investigation.</p> <p>Sexual dimorphism exists in the physiological and transcriptional response to diet, particularly in response to high-fat feeding. Consumption of <it>Trans</it>-fatty acids (TFA) has been linked to substantially increased risk of heart disease, in which sexual dimorphism is apparent, with males suffering a higher disease rate. Impairment of the cardiovascular system has been noted in animals exposed to Monosodium Glutamate (MSG) during the neonatal period, and sexual dimorphism in the growth axis of MSG-treated animals has previously been noted. Processed foods may contain both TFA and MSG.</p> <p>Methods</p> <p>We examined physiological differences and changes in gene expression in response to TFA and/or MSG consumption compared to a control diet, in male and female C57BL/6J mice.</p> <p>Results</p> <p>Heart and % body weight increases were greater in TFA-fed mice, who also exhibited dyslipidemia (P < 0.05). Hearts from MSG-fed females weighed less than males (P < 0.05). 2-factor ANOVA indicated that the TFA diet induced over twice as many cardiac differentially expressed genes (DEGs) in males compared to females (P < 0.001); and 4 times as many male DEGs were downregulated including <it>Gata4</it>, <it>Mef2d </it>and <it>Srebf2</it>. Enrichment of functional Gene Ontology (GO) categories were related to transcription, phosphorylation and anatomic structure (P < 0.01). A number of genes were upregulated in males and downregulated in females, including pro-apoptotic histone deacetylase-2 (HDAC2). Sexual dimorphism was also observed in cardiac transcription from MSG-fed animals, with both sexes upregulating approximately 100 DEGs exhibiting sex-specific differences in GO categories. A comparison of cardiac gene expression between all diet combinations together identified a subset of 111 DEGs significant only in males, 64 DEGs significant in females only, and 74 transcripts identified as differentially expressed in response to dietary manipulation in both sexes.</p> <p>Conclusion</p> <p>Our model identified major changes in the cardiac transcriptional profile of TFA and/or MSG-fed mice compared to controls, which was reflected by significant differences in the physiological profile within the 4 diet groups. Identification of sexual dimorphism in cardiac transcription may provide the basis for sex-specific medicine in the future.</p
Neighbours of cancer-related proteins have key influence on pathogenesis and could increase the drug target space for anticancer therapies
Even targeted chemotherapies against solid cancers show a moderate success increasing the need to novel targeting strategies. To address this problem, we designed a systems-level approach investigating the neighbourhood of mutated or differentially expressed cancer-related proteins in four major solid cancers (colon, breast, liver and lung). Using signalling and protein–protein interaction network resources integrated with mutational and expression datasets, we analysed the properties of the direct and indirect interactors (first and second neighbours) of cancer-related proteins, not found previously related to the given cancer type. We found that first neighbours have at least as high degree, betweenness centrality and clustering coefficient as cancer-related proteins themselves, indicating a previously unknown central network position. We identified a complementary strategy for mutated and differentially expressed proteins, where the affect of differentially expressed proteins having smaller network centrality is compensated with high centrality first neighbours. These first neighbours can be considered as key, so far hidden, components in cancer rewiring, with similar importance as mutated proteins. These observations strikingly suggest targeting first neighbours as a novel strategy for disrupting cancer-specific networks. Remarkably, our survey revealed 223 marketed drugs already targeting first neighbour proteins but applied mostly outside oncology, providing a potential list for drug repurposing against solid cancers. For the very central first neighbours, whose direct targeting would cause several side effects, we suggest a cancer-mimicking strategy by targeting their interactors (second neighbours of cancer-related proteins, having a central protein affecting position, similarly to the cancer-related proteins). Hence, we propose to include first neighbours to network medicine based approaches for (but not limited to) anticancer therapies
Ethical and legal implications of whole genome and whole exome sequencing in African populations
BACKGROUND: Rapid advances in high throughput genomic technologies and next generation sequencing are
making medical genomic research more readily accessible and affordable, including the sequencing of patient and
control whole genomes and exomes in order to elucidate genetic factors underlying disease. Over the next five
years, the Human Heredity and Health in Africa (H3Africa) Initiative, funded by the Wellcome Trust (United
Kingdom) and the National Institutes of Health (United States of America), will contribute greatly towards
sequencing of numerous African samples for biomedical research.
DISCUSSION: Funding agencies and journals often require submission of genomic data from research participants to
databases that allow open or controlled data access for all investigators. Access to such genotype-phenotype and
pedigree data, however, needs careful control in order to prevent identification of individuals or families. This is
particularly the case in Africa, where many researchers and their patients are inexperienced in the ethical issues
accompanying whole genome and exome research; and where an historical unidirectional flow of samples and
data out of Africa has created a sense of exploitation and distrust. In the current study, we analysed the
implications of the anticipated surge of next generation sequencing data in Africa and the subsequent data sharing
concepts on the protection of privacy of research subjects. We performed a retrospective analysis of the informed
consent process for the continent and the rest-of-the-world and examined relevant legislation, both current and
proposed. We investigated the following issues: (i) informed consent, including guidelines for performing
culturally-sensitive next generation sequencing research in Africa and availability of suitable informed consent
documents; (ii) data security and subject privacy whilst practicing data sharing; (iii) conveying the implications of
such concepts to research participants in resource limited settings.
SUMMARY: We conclude that, in order to meet the unique requirements of performing next generation
sequencing-related research in African populations, novel approaches to the informed consent process are required.
This will help to avoid infringement of privacy of individual subjects as well as to ensure that informed consent
adheres to acceptable data protection levels with regard to use and transfer of such information
- …