3,169 research outputs found

    On the Deformation of a Hyperelastic Tube Due to Steady Viscous Flow Within

    Full text link
    In this chapter, we analyze the steady-state microscale fluid--structure interaction (FSI) between a generalized Newtonian fluid and a hyperelastic tube. Physiological flows, especially in hemodynamics, serve as primary examples of such FSI phenomena. The small scale of the physical system renders the flow field, under the power-law rheological model, amenable to a closed-form solution using the lubrication approximation. On the other hand, negligible shear stresses on the walls of a long vessel allow the structure to be treated as a pressure vessel. The constitutive equation for the microtube is prescribed via the strain energy functional for an incompressible, isotropic Mooney--Rivlin material. We employ both the thin- and thick-walled formulations of the pressure vessel theory, and derive the static relation between the pressure load and the deformation of the structure. We harness the latter to determine the flow rate--pressure drop relationship for non-Newtonian flow in thin- and thick-walled soft hyperelastic microtubes. Through illustrative examples, we discuss how a hyperelastic tube supports the same pressure load as a linearly elastic tube with smaller deformation, thus requiring a higher pressure drop across itself to maintain a fixed flow rate.Comment: 19 pages, 3 figures, Springer book class; v2: minor revisions, final form of invited contribution to the Springer volume entitled "Dynamical Processes in Generalized Continua and Structures" (in honour of Academician D.I. Indeitsev), eds. H. Altenbach, A. Belyaev, V. A. Eremeyev, A. Krivtsov and A. V. Porubo

    Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells.

    Get PDF
    Our understanding of Alzheimer's disease pathogenesis is currently limited by difficulties in obtaining live neurons from patients and the inability to model the sporadic form of the disease. It may be possible to overcome these challenges by reprogramming primary cells from patients into induced pluripotent stem cells (iPSCs). Here we reprogrammed primary fibroblasts from two patients with familial Alzheimer's disease, both caused by a duplication of the amyloid-β precursor protein gene (APP; termed APP(Dp)), two with sporadic Alzheimer's disease (termed sAD1, sAD2) and two non-demented control individuals into iPSC lines. Neurons from differentiated cultures were purified with fluorescence-activated cell sorting and characterized. Purified cultures contained more than 90% neurons, clustered with fetal brain messenger RNA samples by microarray criteria, and could form functional synaptic contacts. Virtually all cells exhibited normal electrophysiological activity. Relative to controls, iPSC-derived, purified neurons from the two APP(Dp) patients and patient sAD2 exhibited significantly higher levels of the pathological markers amyloid-β(1-40), phospho-tau(Thr 231) and active glycogen synthase kinase-3β (aGSK-3β). Neurons from APP(Dp) and sAD2 patients also accumulated large RAB5-positive early endosomes compared to controls. Treatment of purified neurons with β-secretase inhibitors, but not γ-secretase inhibitors, caused significant reductions in phospho-Tau(Thr 231) and aGSK-3β levels. These results suggest a direct relationship between APP proteolytic processing, but not amyloid-β, in GSK-3β activation and tau phosphorylation in human neurons. Additionally, we observed that neurons with the genome of one sAD patient exhibited the phenotypes seen in familial Alzheimer's disease samples. More generally, we demonstrate that iPSC technology can be used to observe phenotypes relevant to Alzheimer's disease, even though it can take decades for overt disease to manifest in patients

    LES-based Study of the Roughness Effects on the Wake of a Circular Cylinder from Subcritical to Transcritical Reynolds Numbers

    Get PDF
    This paper investigates the effects of surface roughness on the flow past a circular cylinder at subcritical to transcritical Reynolds numbers. Large eddy simulations of the flow for sand grain roughness of size k/D = 0.02 are performed (D is the cylinder diameter). Results show that surface roughness triggers the transition to turbulence in the boundary layer at all Reynolds numbers, thus leading to an early separation caused by the increased momentum deficit, especially at transcritical Reynolds numbers. Even at subcritical Reynolds numbers, boundary layer instabilities are triggered in the roughness sublayer and eventually lead to the transition to turbulence. The early separation at transcritical Reynolds numbers leads to a wake topology similar to that of the subcritical regime, resulting in an increased drag coefficient and lower Strouhal number. Turbulent statistics in the wake are also affected by roughness; the Reynolds stresses are larger due to the increased turbulent kinetic energy production in the boundary layer and separated shear layers close to the cylinder shoulders.We acknowledge “Red Española de Surpercomputación” (RES) for awarding us access to the MareNostrum III machine based in Barcelona, Spain (Ref. FI-2015-2-0026 and FI-2015-3-0011). We also acknowledge PRACE for awarding us access to Fermi and Marconi Supercomputers at Cineca, Italy (Ref. 2015133120). Oriol Lehmkuhl acknowledges a PDJ 2014 Grant by AGAUR (Generalitat de Catalunya). Ugo Piomelli acknowledges the support of the Natural Sciences and Engineering Research Council (NSERC) of Canada under the Discovery Grant Programme (Grant No. RGPIN-2016-04391). Ricard Borrell acknowledges a Juan de la Cierva postdoctoral grant (IJCI-2014-21034). Ivette Rodriguez, Oriol Lehmkuhl, Ricard Borrell and Assensi Oliva acknowledge Ministerio de Economía y Competitividad, Secretaría de Estado de Investigación, Desarrollo e Innovación, Spain (ref. ENE2014-60577-R).Peer ReviewedPostprint (author's final draft

    香港GPS基准站坐标序列特征分析

    Get PDF
    Author name used in this publication: 丁晓利, DING Xiao-liAuthor name used in this publication: 陈武Author name used in this publication: 陈少彬Author name used in this publication: 周锦添Title in Traditional Chinese: 香港GPS基準站座標序列特徵分析Journal title in Traditional Chinese: 地球物理學報2008-2009 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Integrity of H1 helix in prion protein revealed by molecular dynamic simulations to be especially vulnerable to changes in the relative orientation of H1 and its S1 flank

    Full text link
    In the template-assistance model, normal prion protein (PrPC), the pathogenic cause of prion diseases such as Creutzfeldt-Jakob (CJD) in human, Bovine Spongiform Encephalopathy (BSE) in cow, and scrapie in sheep, converts to infectious prion (PrPSc) through an autocatalytic process triggered by a transient interaction between PrPC and PrPSc. Conventional studies suggest the S1-H1-S2 region in PrPC to be the template of S1-S2 β\beta-sheet in PrPSc, and the conformational conversion of PrPC into PrPSc may involve an unfolding of H1 in PrPC and its refolding into the β\beta-sheet in PrPSc. Here we conduct a series of simulation experiments to test the idea of transient interaction of the template-assistance model. We find that the integrity of H1 in PrPC is vulnerable to a transient interaction that alters the native dihedral angles at residue Asn143^{143}, which connects the S1 flank to H1, but not to interactions that alter the internal structure of the S1 flank, nor to those that alter the relative orientation between H1 and the S2 flank.Comment: A major revision on statistical analysis method has been made. The paper now has 23 pages, 11 figures. This work was presented at 2006 APS March meeting session K29.0004 at Baltimore, MD, USA 3/13-17, 2006. This paper has been accepted for pubcliation in European Biophysical Journal on Feb 2, 200

    Assessing sedation need and managing referred dentally anxious patients:is there a role for the Index of Sedation Need?

    Get PDF
    Aim: To conduct an exploratory investigation of public dental service (PDS) practitioners' planned sedation modality using a structural equation modelling approach, in order to identify the explanatory value of using the Index of Sedation Need (IOSN), or its component parts, to predict sedation modality in patients referred with dental anxiety. Methods: A convenience sample of patients referred to the PDS for dental anxiety management was invited to take part. The IOSN was completed for each patient (patient dental anxiety, medical and behavioural indicators and dental treatment complexity) as well as the American Society of Anesthesiologists Physical Status Classification System and the Case Mix Tool. The practitioners completed details of their planned sedation modality and identified normative dental treatment need. The data were entered onto an SPSS v21 database and subjected to frequency distributions, t-tests, correlation analysis and exploratory partial structural equation modelling (SEM). Results: Ninety-five percent of patients were ranked as MDAS 3 or 4, indicating high dental anxiety; 69% had a medical condition, which might impact on dental treatment and 82% had a dental treatment need, which was classified as intermediate/complex according to the IOSN. Eighty-eight percent of the patients in accordance with the IOSN required sedation: 62% of patients were assessed as requiring intravenous sedation. The IOSN discriminated between patients who were assessed as requiring more complex sedation modalities and had a greater normative treatment need. The SEM showed that the patient dental anxiety (P <0.02) and dental treatment complexity (P <0.02) predicted planned sedation modality. Functional morbidity was less strong, as a predictor, and was significant at the ten percent level. Conclusions: The IOSN is a useful and valid assessment of sedation need and predicted sedation modality for patients referred with high dental anxiety states and secondly, that component parts of the IOSN add explanatory value in practitioners' choice of planned sedation modality

    Shugoshin1 May Play Important Roles in Separation of Homologous Chromosomes and Sister Chromatids during Mouse Oocyte Meiosis

    Get PDF
    Background: Homologous chromosomes separate in meiosis I and sister chromatids separate in meiosis II, generating haploid gametes. To address the question why sister chromatids do not separate in meiosis I, we explored the roles of Shogoshin1 (Sgo1) in chromosome separation during oocyte meiosis. Methodology/Principal Findings: Sgo1 function was evaluated by exogenous overexpression to enhance its roles and RNAi to suppress its roles during two meioses of mouse oocytes. Immunocytochemistry and chromosome spread were used to evaluate phenotypes. The exogenous Sgo1 overexpression kept homologous chromosomes and sister chromatids not to separate in meiosis I and meiosis II, respectively, while the Sgo1 RNAi promoted premature separation of sister chromatids. Conclusions: Our results reveal that prevention of premature separation of sister chromatids in meiosis I requires th

    Multiview classification and dimensionality reduction of scalp and intracranial EEG data through tensor factorisation

    Get PDF
    Electroencephalography (EEG) signals arise as a mixture of various neural processes that occur in different spatial, frequency and temporal locations. In classification paradigms, algorithms are developed that can distinguish between these processes. In this work, we apply tensor factorisation to a set of EEG data from a group of epileptic patients and factorise the data into three modes; space, time and frequency with each mode containing a number of components or signatures. We train separate classifiers on various feature sets corresponding to complementary combinations of those modes and components and test the classification accuracy of each set. The relative influence on the classification accuracy of the respective spatial, temporal or frequency signatures can then be analysed and useful interpretations can be made. Additionaly, we show that through tensor factorisation we can perform dimensionality reduction by evaluating the classification performance with regards to the number mode components and by rejecting components with insignificant contribution to the classification accuracy

    Promoter Hypermethylation Mediated Downregulation of FBP1 in Human Hepatocellular Carcinoma and Colon Cancer

    Get PDF
    FBP1, fructose-1,6-bisphosphatase-1, a gluconeogenesis regulatory enzyme, catalyzes the hydrolysis of fructose 1,6-bisphosphate to fructose 6-phosphate and inorganic phosphate. The mechanism that it functions to antagonize glycolysis and was epigenetically inactivated through NF-kappaB pathway in gastric cancer has been reported. However, its role in the liver carcinogenesis still remains unknown. Here, we investigated the expression and DNA methylation of FBP1 in primary HCC and colon tumor. FBP1 was lowly expressed in 80% (8/10) human hepatocellular carcinoma, 66.7% (6/9) liver cancer cell lines and 100% (6/6) colon cancer cell lines, but was higher in paired adjacent non-tumor tissues and immortalized normal cell lines, which was well correlated with its promoter methylation status. Methylation was further detected in primary HCCs, gastric and colon tumor tissues, but none or occasionally in paired adjacent non-tumor tissues. Detailed methylation analysis of 29 CpG sites at a 327-bp promoter region by bisulfite genomic sequencing confirmed its methylation. FBP1 silencing could be reversed by chemical demethylation treatment with 5-aza-2′-deoxycytidine (Aza), indicating direct epigenetic silencing. Restoring FBP1 expression in low expressed cells significantly inhibited cell growth and colony formation ability through the induction of G2-M phase cell cycle arrest. Moreover, the observed effects coincided with an increase in reactive oxygen species (ROS) generation. In summary, epigenetic inactivation of FBP1 is also common in human liver and colon cancer. FBP1 appears to be a functional tumor suppressor involved in the liver and colon carcinogenesis

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics
    corecore