251 research outputs found

    Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability of C<it>lostridium thermocellum </it>ATCC 27405 wild-type strain to hydrolyze cellulose and ferment the degradation products directly to ethanol and other metabolic byproducts makes it an attractive candidate for consolidated bioprocessing of cellulosic biomass to biofuels. In this study, whole-genome microarrays were used to investigate the expression of <it>C. thermocellum </it>mRNA during growth on crystalline cellulose in controlled replicate batch fermentations.</p> <p>Results</p> <p>A time-series analysis of gene expression revealed changes in transcript levels of ~40% of genes (~1300 out of 3198 ORFs encoded in the genome) during transition from early-exponential to late-stationary phase. K-means clustering of genes with statistically significant changes in transcript levels identified six distinct clusters of temporal expression. Broadly, genes involved in energy production, translation, glycolysis and amino acid, nucleotide and coenzyme metabolism displayed a decreasing trend in gene expression as cells entered stationary phase. In comparison, genes involved in cell structure and motility, chemotaxis, signal transduction and transcription showed an increasing trend in gene expression. Hierarchical clustering of cellulosome-related genes highlighted temporal changes in composition of this multi-enzyme complex during batch growth on crystalline cellulose, with increased expression of several genes encoding hydrolytic enzymes involved in degradation of non-cellulosic substrates in stationary phase.</p> <p>Conclusions</p> <p>Overall, the results suggest that under low substrate availability, growth slows due to decreased metabolic potential and <it>C. thermocellum </it>alters its gene expression to (i) modulate the composition of cellulosomes that are released into the environment with an increased proportion of enzymes than can efficiently degrade plant polysaccharides other than cellulose, (ii) enhance signal transduction and chemotaxis mechanisms perhaps to sense the oligosaccharide hydrolysis products, and nutrient gradients generated through the action of cell-free cellulosomes and, (iii) increase cellular motility for potentially orienting the cells' movement towards positive environmental signals leading to nutrient sources. Such a coordinated cellular strategy would increase its chances of survival in natural ecosystems where feast and famine conditions are frequently encountered.</p

    Surgical resectability of pancreatic adenocarcinoma: CTA

    Get PDF
    Imaging studies play an important role in the diagnosis and management of patients with pancreatic adenocarcinoma. Computed tomography (CT) is the most widely available and best validated modality for imaging these patients. Meticulous technique following a well-designed pancreas protocol is essential for maximizing the diagnostic efficacy of CT. After the diagnosis of pancreatic adenocarcinoma is made, the key to management is staging to determine resectability. In practice, staging often entails predicting the presence or absence of vascular invasion by tumor, for which several radiologic grading systems exist. With advances in surgical techniques, the definition of resectability is in evolution, and it is crucial that radiologists have an understanding of the implications of findings that are relevant to the determination of resectability

    Atomic-accuracy prediction of protein loop structures through an RNA-inspired ansatz

    Get PDF
    Consistently predicting biopolymer structure at atomic resolution from sequence alone remains a difficult problem, even for small sub-segments of large proteins. Such loop prediction challenges, which arise frequently in comparative modeling and protein design, can become intractable as loop lengths exceed 10 residues and if surrounding side-chain conformations are erased. This article introduces a modeling strategy based on a 'stepwise ansatz', recently developed for RNA modeling, which posits that any realistic all-atom molecular conformation can be built up by residue-by-residue stepwise enumeration. When harnessed to a dynamic-programming-like recursion in the Rosetta framework, the resulting stepwise assembly (SWA) protocol enables enumerative sampling of a 12 residue loop at a significant but achievable cost of thousands of CPU-hours. In a previously established benchmark, SWA recovers crystallographic conformations with sub-Angstrom accuracy for 19 of 20 loops, compared to 14 of 20 by KIC modeling with a comparable expenditure of computational power. Furthermore, SWA gives high accuracy results on an additional set of 15 loops highlighted in the biological literature for their irregularity or unusual length. Successes include cis-Pro touch turns, loops that pass through tunnels of other side-chains, and loops of lengths up to 24 residues. Remaining problem cases are traced to inaccuracies in the Rosetta all-atom energy function. In five additional blind tests, SWA achieves sub-Angstrom accuracy models, including the first such success in a protein/RNA binding interface, the YbxF/kink-turn interaction in the fourth RNA-puzzle competition. These results establish all-atom enumeration as a systematic approach to protein structure that can leverage high performance computing and physically realistic energy functions to more consistently achieve atomic resolution.Comment: Identity of four-loop blind test protein and parts of figures 5 have been omitted in this preprint to ensure confidentiality of the protein structure prior to its public releas

    Isolation and Partial Characterisation of a Novel Lectin from Aegle marmelos Fruit and Its Effect on Adherence and Invasion of Shigellae to HT29 Cells

    Get PDF
    Lectins are a class of ubiquitous proteins/glycoproteins that are abundantly found in nature. Lectins have unique carbohydrate binding property and hence have been exploited as drugs against various infectious diseases. We have isolated one such novel lectin from the fruit pulp of Aegle marmelos. The isolated lectin was partially characterised and its effect against Shigella dysenteriae infection was evaluated. The isolated lectin was found to be a dimeric protein with N-acetylgalactosamine, mannose and sialic acid binding specificity. The effect of Aegle marmelos fruit lectin on the adherence of Shigella dysenteriae to human colonic epithelial cells (HT29 cells) was evaluated by Enzyme Linked Immune Sorbent Assay and invasion was analysed. The protective nature of the Aegle marmelos fruit lectin was assessed by analyzing apoptosis through dual staining method. Aegle marmelos fruit lectin significantly inhibited hemagglutination activity of Shigella and its minimum inhibitory concentration is 0.625 Β΅g/well. Further, at this concentration lectin inhibited Shigella dysenteriae adherence and invasion of HT29 cells and protects the HT29 cells from Shigella dysenteriae induced apoptosis. To conclude, isolated lectin dimeric protein with N-acetylgalactosamine, Mannose and sialic acid binding specificity and inhibits adherence and invasion of Shigellae to HT29 cells thus, protects the host

    Stromal Cell-Derived Factor-1/CXCL12 Contributes to MMTV-Wnt1 Tumor Growth Involving Gr1+CD11b+ Cells

    Get PDF
    BACKGROUND: Histological examinations of MMTV-Wnt1 tumors reveal drastic differences in the tumor vasculature when compared to MMTV-Her2 tumors. However, these differences have not been formally described, nor have any angiogenic factors been implicated to be involved in the Wnt1 tumors. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that MMTV-Wnt1 tumors were more vascularized than MMTV-Her2 tumors, and this correlated with significantly higher expression of a CXC chemokine, stromal cell-derived factor-1 (SDF1/CXCL12) but not with VEGFA. Isolation of various cell types from Wnt1 tumors revealed that SDF1 was produced by both tumor myoepithelial cells and stromal cells, whereas Her2 tumors lacked myoepithelial cells and contained significantly less stroma. The growth of Wnt1 tumors, but not Her2 tumors, was inhibited by a neutralizing antibody to SDF1, but not by neutralization of VEGFA. Anti-SDF1 treatment decreased the proportion of infiltrating Gr1(+) myeloid cells in the Wnt1 tumors, which correlated with a decrease in the percentage of endothelial cells. The involvement of Gr1(+) cells was evident from the retardation of Wnt1 tumor growth following in vivo depletion of these cells with an anti-Gr1-specific antibody. This degree of inhibition on Wnt1 tumor growth was comparable, but not additive, to the effect observed with anti-SDF1, indicative of overlapping mechanisms of inhibition. In contrast, Her2 tumors were not affected by the depletion of Gr1(+) cells. CONCLUSIONS/SIGNIFICANCE: We demonstrated that SDF1 is important for Wnt1, but not for HER2, in inducing murine mammary tumor and the role of SDF1 in tumorigenesis involves Gr1(+) myeloid cells to facilitate growth and/or angiogenesis

    Correlation of expression of BP1, a homeobox gene, with estrogen receptor status in breast cancer

    Get PDF
    BACKGROUND: BP1 is a novel homeobox gene cloned in our laboratory. Our previous studies in leukemia demonstrated that BP1 has oncogenic properties, including as a modulator of cell survival. Here BP1 expression was examined in breast cancer, and the relationship between BP1 expression and clinicopathological data was determined. METHODS: Total RNA was isolated from cell lines, tumors, and matched normal adjacent tissue or tissue from autopsy. Reverse transcription polymerase chain reaction was performed to evaluate BP1 expression. Statistical analysis was accomplished with SAS. RESULTS: Analysis of 46 invasive ductal breast tumors demonstrated BP1 expression in 80% of them, compared with a lack of expression in six normal breast tissues and low-level expression in one normal breast tissue. Remarkably, 100% of tumors that were negative for the estrogen receptor (ER) were BP1-positive, whereas 73% of ER-positive tumors expressed BP1 (P = 0.03). BP1 expression was also associated with race: 89% of the tumors of African American women were BP1-positive, whereas 57% of those from Caucasian women expressed BP1 (P = 0.04). However, there was no significant difference in BP1 expression between grades I, II, and III tumors. Interestingly, BP1 mRNA expression was correlated with the ability of malignant cell lines to cause breast cancer in mice. CONCLUSION: Because BP1 is expressed abnormally in breast tumors, it could provide a useful target for therapy, particularly in patients with ER-negative tumors. The frequent expression of BP1 in all tumor grades suggests that activation of BP1 is an early event

    Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The model bacterium <it>Clostridium cellulolyticum </it>efficiently degrades crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H<sub>2 </sub>and CO<sub>2</sub>, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels production. Therefore genetic engineering will likely be required to improve the ethanol yield. Plasmid transformation, random mutagenesis and heterologous expression systems have previously been developed for <it>C. cellulolyticum</it>, but targeted mutagenesis has not been reported for this organism, hindering genetic engineering.</p> <p>Results</p> <p>The first targeted gene inactivation system was developed for <it>C. cellulolyticum</it>, based on a mobile group II intron originating from the <it>Lactococcus lactis </it>L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous <smcaps>L</smcaps>-lactate dehydrogenase (<it>Ccel_2485; ldh</it>) and <smcaps>L</smcaps>-malate dehydrogenase (<it>Ccel_0137; mdh</it>) genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain, resulting in a substantial shift in fermentation toward ethanol production. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products, corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant's tricarboxylic acid pathway.</p> <p>Conclusions</p> <p>The efficient intron-based gene inactivation system produced the first non-random, targeted mutations in <it>C. cellulolyticum</it>. As a key component of the genetic toolbox for this bacterium, markerless targeted mutagenesis enables functional genomic research in <it>C</it>. <it>cellulolyticum </it>and rapid genetic engineering to significantly alter the mixture of fermentation products. The initial application of this system successfully engineered a strain with high ethanol productivity from cellobiose, cellulose and switchgrass.</p

    Sequence-Based Analysis Uncovers an Abundance of Non-Coding RNA in the Total Transcriptome of Mycobacterium tuberculosis

    Get PDF
    RNA sequencing provides a new perspective on the genome of Mycobacterium tuberculosis by revealing an extensive presence of non-coding RNA, including long 5’ and 3’ untranslated regions, antisense transcripts, and intergenic small RNA (sRNA) molecules. More than a quarter of all sequence reads mapping outside of ribosomal RNA genes represent non-coding RNA, and the density of reads mapping to intergenic regions was more than two-fold higher than that mapping to annotated coding sequences. Selected sRNAs were found at increased abundance in stationary phase cultures and accumulated to remarkably high levels in the lungs of chronically infected mice, indicating a potential contribution to pathogenesis. The ability of tubercle bacilli to adapt to changing environments within the host is critical to their ability to cause disease and to persist during drug treatment; it is likely that novel post-transcriptional regulatory networks will play an important role in these adaptive responses
    • …
    corecore