1,995 research outputs found
Recommended from our members
A Clustering System for Dynamic Data Streams Based on Metaheuristic Optimisation
open access articleThis article presents the Optimised Stream clustering algorithm (OpStream), a novel approach to cluster dynamic data streams. The proposed system displays desirable features, such as a low number of parameters and good scalability capabilities to both high-dimensional data and numbers of clusters in the dataset, and it is based on a hybrid structure using deterministic clustering methods and stochastic optimisation approaches to optimally centre the clusters. Similar to other state-of-the-art methods available in the literature, it uses “microclusters” and other established techniques, such as density based clustering. Unlike other methods, it makes use of metaheuristic optimisation to maximise performances during the initialisation phase, which precedes the classic online phase. Experimental results show that OpStream outperforms the state-of-the-art methods in several cases, and it is always competitive against other comparison algorithms regardless of the chosen optimisation method. Three variants of OpStream, each coming with a different optimisation algorithm, are presented in this study. A thorough sensitive analysis is performed by using the best variant to point out OpStream’s robustness to noise and resiliency to parameter changes
Roughness of tensile crack fronts in heterogenous materials
The dynamics of planar crack fronts in heterogeneous media is studied using a
recently proposed stochastic equation of motion that takes into account
nonlinear effects. The analysis is carried for a moving front in the
quasi-static regime using the Self Consistent Expansion. A continuous dynamical
phase transition between a flat phase and a dynamically rough phase, with a
roughness exponent , is found. The rough phase becomes possible due
to the destabilization of the linear modes by the nonlinear terms. Taking into
account the irreversibility of the crack propagation, we infer that the
roughness exponent found in experiments might become history-dependent, and so
our result gives a lower bound for .Comment: 7 page
Three-dimensional foam flow resolved by fast X-ray tomographic microscopy
Thanks to ultra fast and high resolution X-ray tomography, we managed to
capture the evolution of the local structure of the bubble network of a 3D foam
flowing around a sphere. As for the 2D foam flow around a circular obstacle, we
observed an axisymmetric velocity field with a recirculation zone, and
indications of a negative wake downstream the obstacle. The bubble
deformations, quantified by a shape tensor, are smaller than in 2D, due to a
purely 3D feature: the azimuthal bubble shape variation. Moreover, we were able
to detect plastic rearrangements, characterized by the neighbor-swapping of
four bubbles. Their spatial structure suggest that rearrangements are triggered
when films faces get smaller than a characteristic area.Comment: 5 pages, 5 figure
Attractive and repulsive cracks in a heterogeneous material
We study experimentally the paths of an assembly of cracks growing in
interaction in a heterogeneous two-dimensional elastic brittle material
submitted to uniaxial stress. For a given initial crack assembly geometry, we
observe two types of crack path. The first one corresponds to a repulsion
followed by an attraction on one end of the crack and a tip to tip attraction
on the other end. The second one corresponds to a pure attraction. Only one of
the crack path type is observed in a given sample. Thus, selection between the
two types appears as a statistical collective process.Comment: soumis \`a JSTA
Fracture Roughness Scaling: a case study on planar cracks
Using a multi-resolution technique, we analyze large in-plane fracture fronts
moving slowly between two sintered Plexiglas plates. We find that the roughness
of the front exhibits two distinct regimes separated by a crossover length
scale . Below , we observe a multi-affine regime and the
measured roughness exponent is in
agreement with the coalescence model. Above , the fronts are
mono-affine, characterized by a roughness exponent , consistent with the fluctuating line model. We relate the
crossover length scale to fluctuations in fracture toughness and the stress
intensity factor
A Biologically Plausible Transform for Visual Recognition that is Invariant to Translation, Scale, and Rotation
Visual object recognition occurs easily despite differences in position, size, and rotation of the object, but the neural mechanisms responsible for this invariance are not known. We have found a set of transforms that achieve invariance in a neurally plausible way. We find that a transform based on local spatial frequency analysis of oriented segments and on logarithmic mapping, when applied twice in an iterative fashion, produces an output image that is unique to the object and that remains constant as the input image is shifted, scaled, or rotated
Average crack-front velocity during subcritical fracture propagation in a heterogeneous medium
We study the average velocity of crack fronts during stable interfacial fracture experiments in a heterogeneous quasibrittle material under constant loading rates and during long relaxation tests. The transparency of the material (polymethylmethacrylate) allows continuous tracking of the front position and relation of its evolution to the energy release rate. Despite significant velocity fluctuations at local scales, we show that a model of independent thermally activated sites successfully reproduces the large-scale behavior of the crack front for several loading conditions
Discrepancy between sub-critical and fast rupture roughness: a cumulant analysis
We study the roughness of a crack interface in a sheet of paper. We
distinguish between slow (sub-critical) and fast crack growth regimes. We show
that the fracture roughness is different in the two regimes using a new method
based on a multifractal formalism recently developed in the turbulence
literature. Deviations from monofractality also appear to be different in both
regimes
Handover procedures in integrated satellite and terrestrial mobile systems
The integration of satellite and terrestrial mobile systems is investigated in terms of the strategies for handover across the integrated cellular coverage. The handover procedure is subdivided into an initialization phase, where the need for issuing a handover request must be identified, and an execution phase, where the request must be satisfied, if possible, according to a certain channel assignment strategy. A modeling approach that allows the design of the parameters that influence the performance of the overall handover procedure is presented, along with a few numerical results
- …