51,547 research outputs found

    Faraday patterns in dipolar Bose-Einstein condensates

    Full text link
    Faraday patterns can be induced in Bose-Einstein condensates by a periodic modulation of the system nonlinearity. We show that these patterns are remarkably different in dipolar gases with a roton-maxon excitation spectrum. Whereas for non-dipolar gases the pattern size decreases monotonously with the driving frequency, patterns in dipolar gases present, even for shallow roton minima, a highly non trivial frequency dependence characterized by abrupt pattern size transitions, which are especially pronounced when the dipolar interaction is modulated. Faraday patterns constitute hence an optimal tool for revealing the onset of the roton minimum, a major key feature of dipolar gases.Comment: 4 pages, 10 figure

    Kelvon-roton instability of vortex lines in dipolar Bose-Einstein condensates

    Full text link
    The physics of vortex lines in dipolar condensates is studied. Due to the nonlocality of the dipolar interaction, the 3D character of the vortex plays a more important role in dipolar gases than in typical short-range interacting ones. In particular, the dipolar interaction significantly affects the stability of the transverse modes of the vortex line. Remarkably, in the presence of a periodic potential along the vortex line, a roton minimum may develop in the spectrum of transverse modes. We discuss the appropriate conditions at which this roton minimum may eventually lead to an instability of the straight vortex line, opening new scenarios for vortices in dipolar gases.Comment: 4 pages, 3 eps figure

    An Adult with Episodic Abnormal Limb Posturing

    Get PDF
    info:eu-repo/semantics/publishedVersio

    Cadd - On-line synthesis of logic circuits

    Get PDF
    CADD on-line programming system for logic circuit synthesi

    Three-dimensional quasi-Tonks gas in a harmonic trap

    Full text link
    We analyze the macroscopic dynamics of a Bose gas in a harmonic trap with a superimposed two-dimensional optical lattice, assuming a weak coupling between different lattice sites. We consider the situation in which the local chemical potential at each lattice site can be considered as that provided by the Lieb-Liniger solution. Due to the weak coupling between sites and the form of the chemical potential, the three-dimensional ground-state density profile and the excitation spectrum acquire remarkable properties different from both 1D and 3D gases. We call this system a quasi-Tonks gas. We discuss the range of applicability of this regime, as well as realistic experimental situations where it can be observed.Comment: 4 pages, 3 figures, misprints correcte

    Manipulation of the dynamics of many-body systems via quantum control methods

    Full text link
    We investigate how dynamical decoupling methods may be used to manipulate the time evolution of quantum many-body systems. These methods consist of sequences of external control operations designed to induce a desired dynamics. The systems considered for the analysis are one-dimensional spin-1/2 models, which, according to the parameters of the Hamiltonian, may be in the integrable or non-integrable limits, and in the gapped or gapless phases. We show that an appropriate control sequence may lead a chaotic chain to evolve as an integrable chain and a system in the gapless phase to behave as a system in the gapped phase. A key ingredient for the control schemes developed here is the possibility to use, in the same sequence, different time intervals between control operations.Comment: 10 pages, 3 figure

    Proving strong magnetic fields near to the central black hole in the quasar PG0043+039 via cyclotron lines

    Full text link
    The optical luminous quasar PG0043+039 has not been detected before in deep X-ray observations indicating the most extreme optical-to-X-ray slope index αox{\alpha}_{ox} of all quasars. This study aims to detect PG0043+039 in a deep X-ray exposure. Furthermore, we wanted to check out whether this object shows specific spectral properties in other frequency bands. We took deep X-ray (XMM-Newton), far-ultraviolet (HST), and optical (HET, SALT telescopes) spectra of PG0043+039 simultaneously in July 2013. We just detected PG0043+039 in our deep X-ray exposure. The steep αox=−2.37±0.05{\alpha}_{ox} = -2.37 {\pm} 0.05 gradient is consistent with an unusual steep gradient Fν∼ναF_{\nu} {\sim} {\nu}^{\alpha} with α=−2.67±0.02{\alpha} = -2.67 {\pm} 0.02 seen in the UV/far-UV continuum. The optical/UV continuum flux has a clear maximum near 2500 {\AA}. The UV spectrum is very peculiar because it shows broad humps in addition to known emission lines. A modeling of these observed humps with cyclotron lines can explain their wavelength positions, their relative distances, and their relative intensities. We derive plasma temperatures of T ∼{\sim} 3keV and magnetic field strengths of B ∼{\sim} 2 ×108{\times} 10^8 G for the line-emitting regions close to the black hole.Comment: 4 pages, 3 figures, Astronomy & Astrophysics in pres
    • …
    corecore