F @ https://ntrs.nasa.gov/search.jsp?R=19660012370 2020-03-16T22:59:20+00:00Z

¥

; DECEMBER, 1965 REPORT ESL-R-253
M.L.T. PROJECT DSR 9948
NASA Research Grant NsG-496(Part)

Y ii 66 .

R "3\3 i D] R

Ve 1659

“t.\f . {ACCECSIONR NUMBER) (THa0)

R 7/ 7
4

FACILITY FORM

b

-
i

% 7)’%/-? (CODE)/CDX

- o Vr R Ay N
(NABA CR OR THX OR AD NUMBRR)

.
o
A

't
1 e
.

v
g ¥ 3
it
"';‘:”\‘.‘mnnu I

vy, 4

i
e
ot

oY

CADD: ON-LINE SYNTHESIS OF LOGIC CIRCUITS

B s, L A,

7

ol
Angh

e,
a] e
LY, L LS

(1)
B]
O\
T
2
9]
[as]
&

il

Michael L. Dertouzos o
? ‘S%‘g Paul]. Santos, Jr. CFSTI PRICE(S) &
A
; {‘%; Hard copy (HC) <. C
=T s
f?-‘f Microfiche (MF) i 5

iy -1»%‘"" Fs
o

ft 863 July 85

et
A gy 1

pe
- iR TR et SPRRRAL o

f
i
Lt

s
.,f..;‘;%'

Electronic Systems Laboratory

i
L 3

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139

Department of Electrical Engineering

. .

<

December, 1965 Report ESL-R-253 Copy 32

CADD: ON-LINE SYNTHESIS OF LOGIC CIRCUITS

by
M. L. Dertouzos and P,J. Santos, Jr.

The preparation and publication of this report, including the research
on which it is based, was sponsored under a grant to the Electronic
Systems Laboratory, Massachusetts Institute of Technology, Project
DSR No. 9948. This grant is being administered as part of the
National Aeronautics and Space Administration Research Grant No.
NsG-496 (Part). This report is published for information purposes
only and does not represent recommendations or conclusions of the
sponsoring agency. Reproduction in whole or in part is permitted
for any purpose of the United States Government,

Electronic Systems L.aboratory
Department of Electrical Engineering
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

ABSTRACT /\/ G 6 -2/ 65‘7

The central aim of logical design is the synthesis of any given switch-
ing function in terms of given sets of elementary building blocks, for
the optimization of some performance index in the presence of con-
straints, Although the present ''state of the art'' yields algorithmic
methods for the solution of certain specific instances of the problem
(such as minimization of building-block inputswithatwo-level, AND-
OR realization), no fully algorithmic method exists for the solution of
the more general problem.

The system described in this paper gives solutions to the general
problem by use of an online process (using Project MAC at M.1.T.),
where the machine accomplishes those computational tasks which can
be algorithmically specified, and where the user provides those de-
cisions which he is better qualified to make. The machine portion

of the system is based on a set of heuristic procedures which guarantee
convergence of the process and give better results than conventional,
sub-optimal brute-force techniques., The machine thus behaves in an
"intelligent' fashion using successive local-optimization procedures
and does not depend on impractical (and usually impossible) ex-
haustive searches through all possible solutions, When coupled with
the flexible human decision process, these procedures give results of

practical significance. {

iii

CHAPTER I
A,
B.

C.

CHAPTER 11
A,
B.
C.
D.

CHAPTER 111
Ao
B.

CHAPITEK 1V
A,

CONTENTS

INTRODUC TION page
DESCRIPTION OF THE PROBLEM
METHOD OF SOLUTION

1. General Concepts
2, CADD-1 and CADD-2

BASIS FOR EVALUATION OF RESULTS

DESCRIPTION OF THE SYNTHESIS METHOD
OUTLINE

PRELIMINARY PROCESSING
DECOMPOSITION

CONVERGENCE AND SPECIAL CASES

IMPLEMENTATION
PROGRAMMING CONSIDERATIONS
GENERAL PROGRAM STRUCTURE

1. CADD-1
2, CADD-2

PROGRAM OPERATION
1. CADD-1

a, Input Phase
b. Decomposition Phase
c. Support Phase

2, CADD-2

a. Input Phase
b. Decomposition Phase
c. Support Phase

- — s e MM RTNY TTT

SULTS AND COINCLUGITING

. Limitations
. Comparison with other Methods
. Effect of Human Operator

CADD-2

R
C
1
2
3

B
ADD-1 .,

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D

BIBLIOGRAPHY

CONTENTS {Cont.)

DATA STRUCTURES
DETAILED FLOW CHARTS
SAMPLE RUN FOR CADD-1

SAMPLE RUN FOR CADD-2

vi

47

53

71

77

83

Fig, 1.
Fig
Fig. 2.2
Fig,
Fig. 2.4
Fig. 3.
Fig, 3.2
Fig. Al.
Fig., Al.
Fig. Al.
Fig. Al.
Fig. Al.

(6 2 IR U UUR oS I

LIST OF FIGURES

Illustration of Recursive Decomposition Process

Outline of Synthesis Method
Illustration of Conventions

Typical Decomposition Step
Using Three-Input NOR Gates

Sample Decomposition

Using Folding Techniques

General Program Structure for CADD-1
General Program Structure for CADD-2

Structures Used in Library Generation

Building Block Directory and Library

Common Structures Used During Decomposition
Typical Tree Element

CADD-2 Data Structures

vil

14

20

24
28

48
49
50
51
52

-2 -
be used in this case. This is an instance where fan-in limitations
prevent the use of the standard minimization algorithms. Moreover,
synthesis limitations are present when there exist no standard synthesis
method that can handle a given set of logic gates. An example of such

a case is synthesis restricted to EXCLUSIVE-OR and AND gates,

even when these gates have no fan-in restrictions,

B. METHOD OF SOLUTION

1. General Concepts

The method of solution described in this report is basically heuristic;
a fully algorithmic and rigorous treatment of this problem does not
exist presently and its future development seems unlikely in view of
our current knowledge. Fundamental to this heuristic approach is
the use of a digital computer on an interactive basis with the human
designer. Another aspect of this approach which is a basis for its
heuristic structure is a dependence on local, rather than global,
optimization algorithms. To illustrate and clarify the often abused
term "heuristic', the following description of system operation is
given., A discussion of convergence of the method is given in Chapter
II, Section D,

The designer, located at a remote terminal of a digital computer,
communicates with it typically via a keyboard, and perhaps through a
graphical display. A computer program governs the man-machine
interaction, and provides the necessary calculating power, The
designer provides the program with the necessary data about the
Boolean function to be synthesized and the set of blocks which are to
be used in the realization of that function. The man-machine combina-
tion then carries out a recursive decomposition which operates first
on the given function and then on each subfunction into which the
given function is decomposed. Decomposition is thus continued until
each non-decomposed subfunction becomes either an input variable
or a constant., A simple example of such a decomposition process
is shown in Fig. 1.1 where the allowable gates are two-input ANDs
and ORs, Each step of the process corresponds to a subfigure, and
the subfigures are numbered in increasing order of complexity of

decomposition. Note the multiple use of function BD. This example

CHAPTER I

INTRODUCTION

A, DESCRIPTION OF THE PROBLEM

The synthesis of a given switching function using logical building
blocks (gates) is a task which has traditionally been approached with
emphasis on some optimality criterion. At present, there exist
methods of synthesis such as two-level AND-OR, NOR-NOR, and
NAND-NAND, which guarantee an optimal realization of any switching
function., Common features of such methods are:

a) a restriction on the type and method of interconnection of
building blocks, and

b) a lack of restriction on the number of inputs to these blocks,

For example, two-level AND-OR synthesis of arbitrary (four-variable)
switching functions may require the use of AND gates with two to four
inputs and an OR gate with two to eight inputs,

It is a matter of definition that any set of building blocks which is
"logically complete"jz< can be used exclusively in the synthesis of any
given switching function, It is desirable, then, to have a general
method which synthesizes any given Boolean function using any given
set of logically complete blocks. Such a general synthesis approach
is the objective set forth in this report.

Before outlining the foregoing generalized method, it seems
appropriate to give a clearer and more specific picture of the
limitations which generally confront the user of conventional optimal
techniques, In the case of AND-OR synthesis, for example, a
perfectly valid, logically complete set might be a two-input AND gate
and a two-input OR gate. Since the well-known optimal technique

requires either or both blocks to have more than two inputs, it cannot

5 . .

At no point in the method to be discussed is the logical completeness
of a given set questioned. The proof of completeness is, in general,
a difficult task and has therefore been assumed to be already shown,

< (G}
<Zo
o
a <
«Zo
[
(o)
g < (9} =) [a]
~ L1]
Qe
[xzo] [<Z2]
l o~ .
w0
19}
1<
1
[<ze] [«zo]
o™ < U o [a) < |u
9]
<2 RN
o |
<Za . Ow [<Zo «Zo IiZo~|
[12]
[a)
1Q
[~} (o]
<€
(o)~ 1
«Zo <Za
1 <€ (8] m Q

L<Zc: <Za m

= l<(1 O ¥
[a] [a]
g1'Y . |<Zo| [<Zo|
< | 1< N
Qe

ABCD + ABCD

(o

IHlustration of Recursive Decomposition Process

Fig. 1.1

-4~

is given to illustrate principles of operation and does not represent
a CADD-generated solution.

As a general rule, the system of programs which implement
the method and control the interaction do not allow the operator to
make a decision which is inconsistent with the current state of the
decomposition, both by checking each decision and by limiting his
choices. The final result of the synthesis is a block diagram which
contains only building blocks belonging to the originally specified
complete set, arranged in some arbitrary tree structure and
realizing the given function.

A completely mechanized heuristic approach to a problem of
this magnitude would involve a large amount of programming to
account for all possible circumstances, and would be, moreover,
inflexible to change. By using an interactive system, however, all
or part of the decision mechanism can be delegated to the human
designer, Thus, programming time and the amount of computer
memory occupied by the programs are reduced. Furthermore, the
interactive system is flexible and permits an easier development of
heuristics to meet the many unexpected situations which inevitably
arise.

Because of the foregoing, the system started out in a highly ex-
perimental form, with most of the decision-making burden assigned
to the human., Gradually, however, modifications were introduced
to balance the apportionment of decision-making and computing. The
modifications were derived from the observation of common situations
and patterns which were amenable to algorithmic solution.

Global optimization usually involves an unmanageable growth of
data space, and severely limits the size of the problem which can be
attacked. Local optimization, on the other hand, although it generally
gives results which are not globally optimal, has the advantage of a
reasonably bounded data space and is capable of handling larger
problems with an attendant increase in computer time only.

This report concerns two basic programs referred to as CADD-1
and CADD-2 which are the original and modified versions of the method

under discussion,

2, CADD-1 and CADD-2
CADD-1 refers to the system completed in June, 1965. This

system is free of program errors and is capable of attacking the type

of problem described in the foregoing. It is subject, however, to
| several deficiencies which can be separated into three areas,

The first of these deficiencies concerns the inclusion of the
function library* (g.v.) and its attendant need for folding, rotating,
etc, In retrospect, it was found that the function library contributed

‘ little to the synthesis process and used a large amount of program
‘ space,

The other two deficiencies are on the implementation level and
concern the speed and amount of man-machine interaction, CADD-1
uses a typewriter for all interaction, and hence a large amount of
real (human) time is consumed in the typing of decomposition tables
and block diagrams for the information of the designer. Also, since
CADD-1 is a highly experimental system, a large amount of interaction
replaces unknown algorithmic tasks. Experience with CADD-1
eventually made much of this interaction unnecessary.

The foregoing deficiencies make CADD-1 a rather slow system
in terms of real time (six hours of interaction may be required for
a difficult six-variable function), even though computer time usage
is small (about two minutes for the same six-variable function).

To overcome these shortcomings of CADD-1, a new system,

CADD-2, was created. Major modifications consisted of removing

the tunction library and iis assoclaicd machinery, using a graphical
display rather than a typewriter to speed up the rate of interaction,

and eliminating certain areas of interaction. The graphical display
used in CADD-2 is the Electronic Systems Laboratory Display Console,
and the digital computer used for both CADD-1 and CADD-2 is the
Project MAC time sharing system using a modified IBM 7094 processor,

C. BASIS FOR EVALUATION OF RESULTS

Because the generalized synthesis procedure deals generally

with problems to which there are no other known methods of solution

¥
A library composed of functions generated by permuting and negating
inputs of all the available building blocks.

-6-

except for so-called "brute-force' methods (to be discussed), it
becomes difficult to judge the ""goodness' of a particular circuit
realization developed by CADD-1 or CADD-2, In a sense, itis
""good'" that even a single solution has been achieved. Furthermore,
how is one to judge the '"goodness'' of a certain block-diagram con-
figuration, which was purposely generated in that form by the user
for reasons of his own? Such a configuration may be better than
another configuration which perhaps contains fewer blocks but fails
to satisfy criteria of greater importance to the user,

Since there exist conflicting or unknown measures of '"goodness]’
the only comparison used here is based on the relative number of
building blocks used by the generalized versus the (a priori known)
""brute-force' techniques.

The "brute-force' technique discussed in the foregoing consists
of the following steps

1. Since the given set of building blocks is logically complete,
use it to generate {AND, OR}, {NOR} or {NAND}. That

is, construct each member of this new set from members
of the given set and from the constants 1 and O,

2, Carry out the classical two-level minimal AND-OR, OR-AND,
NOR-NOR, or NAND-NAND synthesis.*

3. Substitute members of the classical realization by members
of the given set in accordance with step 1, above, Observe
that step 1 may be invoked several times, such as, for
example, when a particular type of block required by the
classical realization contains a different number of inputs
than a block already generated. Such a case would be the
building of a four-input AND gate from two-input AND gates.

4. Retain the realization generated from step 3 above which
uses the least number of building blocks belonging to given
sets. This realization will be then compared to realizations
obtained using generalized CADD techniques.

It may be true that this comparison is somewhat arbitrary and
unfair., Nevertheless, it is the only known method that can be
consistently used, since it is independent of the type of logic blocks

to be used and of the function to be synthesized.

Superscripts refer to numbered items in the Bibliography,

CHAPTER II

DESCRIPTION OF THE SYNTHESIS METHOD

A, OUTLINE

A flow diagram which outlines the generalized synthesis method
is given in Fig, 2,1, Operation can be considered in three phases:
Phase I, where the program accepts as input the function to be
synthesized and the building blocks to be used, and, in the case of
CADD-1, generates from each building block a 'library' of functions
to be used in Phase III; Phase II, where the program provides the
mechanism for associating one of the given building blocks with the
current function to be realized; * and Phase II, where the mechanism
is provided for properly decomposing the current function, under
the restriction of the given building blocks, into subfunctions. These
subfunctions are either constants, variables, negated variables,
building~block functions of variables from the library generated in
Phase I (CADD-1 only), functions already realized, the fan-out of
which has not yet been exceeded (CADD-2 only), or functions which
in turn have to be decomposed later.

Phase I is described more fully in Section B of this chapter,
Phases II and IIl in Section C, and particular aspects of Phase IIl in

Section D.

B. PRELIMINARY PROCESSING

Fiior to beginning the actual synthesis, a certain amount of
processing of the given set of building blocks must take place. This
preprocessing consists of the creation of subelements in the building
block directory and, in the case of CADD-1, the generation of a library
of functions, for each building block, to be used in a manner described

in Section C. For each given block, the preprocessing operation is

as follows:

The current function may be the result of successive decompositions
of the original function, or the original function itself,

-7 -

dOl1s

PoYIoW sisayuis Jo aul|inO

¢3341 40 dOlL

1"z *Bid

3331 NI 13A31
SNOIATYd OL
NOIIN3LLY

L]

ou

y IHL X208
s INISIUd § ou NWIY
ou
D018 NI
SIVOO 8N VOO 8Ns |
YIHIO ANY. sak M3IN AdDId
V09 9ns SIAOW Q3D¥04
NI 114 ILV¥INID
II 3SVHd
VOO NIVW IXIN SIAOW QIDVU0A |e NOILONN4ENS FHL
SV NOILONNA 13§ 31V¥INID 40 153¥ 3HL NI 1114 ou
I 3SVHd
1 "ON

(o)—

1NdNI YOO dns
1X3IN Sv dN 13§

I 3ISVHd

SIAOW QIDN04
31V¥3INIOD

«15384 ADld

sak

JUHM HLIOM
ONIHIANY

sak

¢ 113 ONIHIANY
$30a

W3IHL 3AVS
ANV ,Slidu 304 |
A¥VIEIT HO¥VIS

INLONALS
IN3S3¥4d OL

35N Ol X20014

22074 aav

O

A¥VYEIT XD018

I1V¥INIOD

¢ - daav> NI ION

IIIIII —

A2074 OZ.Q;:M_I

HOIHM 341334

1NdNI

-«

13vis

NOILDONN4
1NdNI

1. Create a new subelement in the block directory which
contains all the pertinent information about the block, such
as its truth table, the number of inputs, its name, and a
usable specification of its function. This function specifica-
tion takes the form of two lists which indicate for what
combinations of input values the block generates ZEROS and
ONES, respectively, To generate these lists, first roughly
list all possible input combinations which yield, say, a
ZERO, and then refine this list in a manner similar to the
Quine-McCluskey2 procedure. Thus, any element of the
list which is independent of a particular input, carries a
DON'T CARE entry under that input.

b

2, Detect all the sets of inputs about which the function is
symmetric, since the function is invariant under permuta-
tions of these inputs. This is done by choosing the smaller
of the two (zero or onej function specification lists and
considering all possible interchanges of inputs within the
lists in order to see if, indeed, the function remains in-
variant under that particular interchange of inputs., Clearly,

inputs which are symmetric to the same input are symmetric
to each other.

3. Generate all unique permutations of the inputs by using the
detected symmetries to eliminate hidden duplicates.

4, Initialize a library list and append to it items consisting of
a truth-table specification of a block function and an indica-
tion of the permutations and negations of the input variables
which generate this function., For each permutation, and
for each possible combination of negations, an item is added
to the list if its truth table does not duplicate that of an item
already in the list. When the creation of the library list is
finished, it contains all possible functions which can be

generated by permuting and negating the inputs to the given
block.

C. DECOMPOSITION

Classical synthesis methods generally build up the circuit realiza-
tion by successive combinations of simple functions starting from the
input variables until the desired output function is produced. The
synthesis method presented here does the opposite, i.e,, it works
from the output function back toward the input variables, decomposing
each function into several "simpler'" functions which may, in turn,

have immediate realizations or may need to be further decomposed.

b3
Sections 2 through 4 apply to CADD-1 only.

10
Before proceeding with a detailed description of the process,
two conventions used for representing an n-variable Boolean function
F(xl"

. n . . .
ina 2 -element array the values of F in an ordering which corres-

s ,xn) will be explained, The first convention consists of entering

ponds to the binary natural code formed by x PX . Thus, for

example, the value F(W,X,Y,Z) = 1 at Wi 0, X=1, Y=0, Z2=1
is entered in the sixth element of the array since 0101 is the sixth
binary number counting zero. The remaining values of F(W,X,Y, Z)
are similarly entered as shown in the example of Fig, 2,2a. The
second convention involves two sets of n-element arrays, corresponding
to the minimum sum of products and to the minimum product of

sums. Each of these products (sums) is placed in an n-element array
by entering ONES (ZEROS) for those liter: Is of the product (sum)
which are present and entering DON'T CARES for the remaining
literals, For example, a three-input OR is represented in this con-
vention as shown in Fig. 2,2b,

Returning to the description of decomposition, let us assume that
we are given a function (using the first convention described above)
which is to be realized. It is desired that this function be realized
at the output of one of the given building blocks. First, a block is
chosen, in a manner to be described. The problem is, then, to find
a set of subfunctions associated one-to-one with the inputs of the block,
and satisfying the following condition. for each combination of the
pertinent input variables, these subfunctions give a set of values which
when applied to the block produce the correct output value, Each
subfunction is dependent on the same variables as the original function
or some subset of those variables. For example, suppose the function
to be realized has a ZERO value for the fourth element and the block
realizing this function is a two-input OR. Then subfunctions F and
G, corresponding to inputs 1 and 2 respectively, must both have
a ZERO value for their fourth c:lement, since an OR generates a ZERO
only if both inputs are ZERO. The method for solving this problem
and assigning subfunctions to inputs is, for the most part, also
described below. although certain aspects of the process, such as

convergence and the encounter of '"dead ends', are discussed in later

b4

sections,

-11-

uolpjuasaiday uoljos1yisadg uolgoung (q)

YO indui-sa1y} o Joy

_ ¢ 4
¢ L $
¢ i L

Lo 1 o 1 o

€ 1NdNI Z 1NdNI L 1NdNI
¥0

vl

tltftfo]o

ol L1 10 00 L 1NdNI

€ 1NdNI ¢ 1NdNTI

SUOLJUBAUOD) Jo uolipiysn)|| z°Z *Bid

SYOLVY¥INIO
INO

SYOLVYINIO
(6}.EV4

uolpjus sasday uoyyoungd (o)

YD LNOQ = ¢ :1ION

(Z'A'X'M) 4

ol

Lt

1o ==

olojojo
o|o|Oo]|~
olo|~]|~

ofl—|—]—|-

o
—
—
—
Q
o

XM
ZA

[;—OOO-—-—O——O-———-—OCD—I

N O — O 0 0 0 0O — 0O — 0O —

> 0 0O - = 00 = — 0 O ~ O ©Q — -

X O O O O — —r— r—_0 0 O O rm — rm -

T 0O 00000 Q0O =~ r— ¢~ — =

_12-

In selecting a block to realize a given function, the number of
ONES and ZEROS of the function are first obtained, and the DON'T
CARESs ignored, Then an operator is applied to each block to
determine which is the '"best' block to use under the circumstances.
The operator contains four sections, each of which is given a weight
(variable throughout the course of the process) commensurate with
the relative importance of that section, The sections are concerned
with:

(2) The number of constants (ZEROs and ONEs) appearing
in the Building block function specification,

(b} The number of DON'T CAREs appearing in the same
specification,

(c) The number of possible ways to generate each of the
desired output values.

(d) The number of block inputs.

The operator uses the information about the number of ONEs or
ZEROs of the function to weigh the significance of the ONE generators
or ZERO generators of the building block function specification,
respectively, Operations performed by Sections (a) and (b) are
normalized in order to achieve independence from “ections (c) and
(d) above. The reason for making the weight adjustable is because
the meaning of '"best block'' changes from one point in the process to
another, For example, given two blocks which are identical in
'""goodness'' except that one has more inputs than the other, the one
with more inputs is ""better' at the beginning of the decomposition
because it tends to simplify the problem more rapidly; whereas,
toward the end of the decomposition, the one with fewer inputs may
be ''better",

Once a block has been chosen; it is added to the existing structure

of the block diagram and a decomposition table for that block is created.

The table is a rectangular array which has a column for each input

to the block, a column for the function to be decomposed, and a row

for each element of the function array. The total number of rows is Zn,
where n is the number of arguments of the function. It may be
possible to fill in certain entries in the decomposition table immediately,

For example, if the function has a DON'T CARE in a certain row, then

-13-
all other entries of this row will be DON'T CAREs Moreover, if

the type of block chosen is such that it can generate, say, ZEROs,

in only one or a few ways so that certain inputs must have certain
values and no others, then every row in which the function has a
ZERO must be filled in according to these input restrictions, Figure
2. 3a shows how initial restrictions are filled in. Note, in particular,
0 is ONE contains ZEROs under all sub-
functions. since a NOR can generate a ONE only if all inputs are
ZERO

The next step in the process is to try to choose an immediate

how all rows for which F

realization for one of the subfunctions, usually the one corresponding

to the first input, F In the example of Fig., 2.3a a search of

available immediatelrealizations is made, rejecting all those which
are incompatible with having a ZERO as their fourth and seventh
element Those rea:izations which are compatible are said to "fit'';
for instance, the variable X does not fit because it had a ONE in its
seventh element, whereas the variable Y fits, since it contains
ZEROs in its fourth and seventh elements. From all those realizations
which fit, the "best' one is chosen and used o fill in the particular
column (subfunction) under consideration. The ''best" subfunction
depends upon the type of block being used. In the case of a NOR gate
the subfunction which row by row yields the highest . .'vcorrelation**
with the function is ""best', since it generates the greatest number of
DON'T CAREs in succeeding subfunctions, i.e., if the output of a NOR
is ZERC, then 2 ONFE on anv of its inputs allows the other inputs to
be arbitrarily assigned. In the case of an AND gate, correlation rather
than anticorrelation is the '"goodness' criterion, for the same reason,
i,e., the maximum generation of DON'T CAREs. Once a goodness
criterion has been chosen for a given type of building block the same
criterion can be used throughout the synthesis.

In Fig, 2, 3b, Fl
that both variables and their negations are available), since it was

found to be the ''best' subfunction. Variable Y is attached to the first

has been filled in with the variable Y (recall

)

T A constant, variable, negated variable, library function (CADD-1
only). or a previously realized function (CADD-2 only).

N
RS

Anticorrelation i1s the negative of the correla

-14 -

o -9 6

o8 B

o ~ 6

N

(a)

Y
0

z
0

Y
0

€ 9 ©

6 ~ o

-

o 6

IX >IN

(d)

(¢)

NOTE:

DON'T CARE

¢=

Fig. 2.3 Typical Decomposition Step Using Three-Input NOR Gates

~-15.-~

input of the NOR in the block diagram, and further entries in the
table may now be filled in. In the present example, Fig. 2.3b shows
how DON'T CAREs are generated in the remainder of the first,
second, and fifth rows due to the ONEs of the first subfunction.

The above procedures are repeated for each of the remaining
inputs to the block and each time a subfunction is chosen and filled
in, it further restricts the behavior of the remaining inputs. A point
may be reached sooner or later when no immediate realization "fits'.
In this case, remaining blank entries are filled in a manner left to
the discretion of the operator, but subject to some of the points to be
mentioned in Section D, The resulting subfunction is then treated as
a new function to be decomposed. Upon successfully completing this
further decomposition, the process moves on to the next input until
all inputs have been filled, at which point the original function has
been successfully decomposed and attention is then returned to the
preceding level of decomposition. In the example of Fig. 2.3, all
inputs have immediate realizations: the NOR of X, Y, and Z for
the second input (Fig. 2.3c) and the NOR of X, ¥, and Z for the

third input (Fig. 2.3d), so that no further work is necessary and the

given function has been decomposed.
To summarize, the decomposition process is accomplished as
follows:
1. Take the given function to be synthesized and apply to it the

block selection and decomposition techniques illustrated
above,

2, Apply these techniques to all generated subfunctions which
cannot be immediately realized and iterate until a final
realization of the original function is reached.

The path followed by the process in performing Steps 1 and 2
above will form a tree-like structure which is one-to-one with the
block diagram representing the current state of the synthesis. The
process terminates when all the inputs of the first block in the tree

(block diagram) have been filled and realized.,

D. CONVERGENCE AND SPECIAL CASES

~o0 far we have not discussed convergence, i.e., the termination

of the entire process in a successful realization. The question of

-16-
whether convergence can be achieved or not will be called the con-
vergence problem. The convergence problem arises whenever a
given subfunction is not immediately realizable, but must be further

decomposed, In the following subfunction G is said to be a con-

vergen: subfunction of function F if either

A. min (ONEs (F), ZEROs (F)) > min (ONEs (G), ZEROs (G))
or

B. DON'T CAREs (G)> DON'T CAREs (F)

If for every generated subfunction one of these convergence criteria
is obeyed, then repeated decomposition will yield final functions which
are either an input variable, a constant, or a DON'T CARE.

For any arbitrary set of logic gates, it is not certain that this con-
vergence criterion will be satisfied, On the other hand, it is possible
to show that convergence can always be satisfied for certain given sets
of building blocks, For example, proof of convergence when the given
set consists of n-input NOR gates follows:

PROOF: Let the function to be realized have N. ZEROs, N1
ONEs, and N2 DON'T CAREs. Then each subfunction which is not
immediately realizable contains exactly NO' = N1 ZEROs (due to the
ONEs of the function), N,' < N, ONEs and NZ' > N2 DON'T CAREs,
0’ Nl)Zmin (N,.', Nl') and

1 0
which assures convergence since min (N
NZ' > NZ' The reason that Nl' is less than N

0 (and therefore by

mutual exclusion NZ' > NZ) is as follows:

a. Assume that in the worst case, no immediately realizable
function fits any of the n inputs. Then assign a single ONE
in each row where the function is ZERQO, distributing these

ONEs as evenly as possible among the inputs.™ It follows
that

N,'< [N,/n] +land N,'=N, + N, - N,

thereby confirming the assertion.

b. Assume one or more immediately realizable subfunctions
fit some of the inputs. Since these subfunctions must con-
tain at least one ONE (otherwise they would be trivial and
serve no purpose in the decomposition), and since this ONE

This results in at most [o] + 1 ONEs per input, where [X]
means the integer part of X,

-17-

must occupy a row which corresponds to a ZERO in the
function, all other unfilled inputs are assigned DON'T
CARESs in that row and hence Nz' > N, + 1 and Nl' <

N;,-1 for the remaining subfunctions, thus confirming

the assertion.

Dually, use of the set of n-input NAND gates renders the method
convergent, Likewise, convergence has been shown when the given
set consists of minority gates. In addition to the above set of gates,
it is expected that convergence can be shown for a number of
logically complete sets. No special effort was spent in attempting
to show convergence for other sets of gates, since primary attention
was directed on the development of the method.

In explaining the generalized synthesis method of Section C, certain
special situations were not discussed in order that the basic ideas be
made as clear as possible, These special situations can be grouped
into cases requiring '"folding', permutation of variables, and '"backing
up'', the first two being present in CADD-1, and last being present
in both. The remaining discussion in this section, with the exception
of the '"backing up'' issue, applied mainly to CADD-1.

In the example of Fig. 2.3 the function to be realized depends on
three variables. Furthermore, the only building block in the function
library has three inputs. Hence, both function vectors (linear arrays)
are of equal length, The natural question arises as to what policy
should be taken if the length of the function vector of the function to be
realized were unequal to that of any or all of the immediately realizable
functions arising from the building blocks 1n the funciiua library. The
answer to this question depends on the relevant circumstances outlined

below:

1. The number of variables, on which the subfunction to be realized
depends, is less than the number of inputs of any of the blocks
in the library. Consequently, the function vector of each block
is longer than the vector of the function to be realized. There-
fore, of all available immediately realizable subfunctions, only
variables and constants can be used,

2. The number of variables, n, on which the function to be realized
depends, is greater than or equal to the number of inputs m
of some or all of the building blocks. Those blocks for which
m = n are treated as before, that is they are tested for 'fitting"
and '"goodness' along with the variables, and constants. Blocks

-18-

for which m < n can bg used, provided that their function

vectors are ''unfolded" to accommodate the greater length
of the subfunction vector or, conversely, the subfunction is
folded' * to accommodate the lesser length of the building

block function vector. Those blocks for which m > n are
not used at this decomposition stage.

A subfunction vector can be 'folded' about its highest-order
variable if the first half of the vector is consistent with the second
half in the following sense:

1, Let 2p be the length of subfunction F, and p the length of
folded subfunction F'.

2, For { =0 toi=p-1:

a) If the ith element of F, Fi’ is a DON'T CARE or

an unfilled entry, Fi' = Fp+i
b) If Fi = 0 and Fp+'1 = 1, then folding is impossible,
and the procedure stops, otherwise element Fi' =0

c) If element Fi=1 and FP""L

and the procedure stops, Otherwise element Fi' =1,

= 0 folding is impossible

Conversely, '"unfolding' a subfunction consists of doubling the
length of its function vector by repeating it.

When decomposing a function of n variables, and attempting to
check the fit and '"goodness' of an immediately realizable subfunction
derived from a block having m < n inputs, the subfunction is repeatedly
"unfolded" n-m times and is then treated as any other immediately
realizable subfunction, The effect of the unfolding process is to make
the subfunction independent of the highest-order n-m variables,
Clearly the other subfunctions assume the burden of this dependence.
Moreover, the extent to which a given, partially specified subfunction
can be folded places a lower bound on the number of inputs a usable
block may have. That is, if the maximum folded length of the function
vector of a subfunction is greater than that of a block, then that block,
when unfolded, will not fit, since otherwise that subfunction could have
been further folded,

®
The process of folding and unfolding is discussed in the next paragraph.

-19-

Since folding, in general, implied independence from one or more
variables, all non-immediately realizable subfunctions, before being
in turn decomposed, are folded as far as their completely specified
entries permit, This technique, which also applied to CADD-2,
allows the subfunction to be dependent on as few variables as possible
and therefore makes the function easier to decompose. Many times
these non-immediately realizable subfunctions can be folded by a.
judicious assignment of blank entries in the decomposition table.
Since folding a subfunction satisfies convergence (a function can only
be folded a finite number of times), a good heuristic technique con-
sists of using up as many restrictions>:< as possible, under one sub-
function, provided they do not interfere with the folding of that sub-
function. The reason for this approach is that other subfunctions may
then receive the benefits of DON'T CAREs in the rows where restric-
tions have been satisfied, The next most desirable alternative to
finding an immediate realization for a subfunction is the ability to fold
it, particularly if some restrictions can be absorbed at the same time.
Several examples of folding appear in Fig. 2.4 with Fig. 2.4a pertain-
ing to CADD-1 only and with Figs, 2.4b and 2, 4c pertaining to both
CADD-1 and CADD-2,

Folding was explained in terms of the highest-order variable since
it is easier to see physically than folding about some other variable.
Clearly, it can be extended to folding about any variable through an
available mechanism. The number of permutations that are tried
at each level of the decompositionis arbitrary, and will affect the local
optimality of the solution, rather than the actual finding of a solution
It should be noted that for a given n-variable function and an m-input
block at most {(n-m)! permutations of the variables (starting with the
highest-order one) need be tried since the least significant m-variables,
corresponding to the m-inputs of the block, have already been ex-
haustively permuted in the function library., Examples of this permuting

process are shown in Fig, 2,4,

E3]
Restrictions are any situations which limit decomposition operations
such as folding, fitting, etc.

F4

2 6

F1

Z w X Y

F3 F4
é
¢ ¢

X Y Z F1 F2 F3 F4 X Y Z W F1 R
0 0 0 .3
0 00 ¢ ¢ ¢ ¢

“I

0

0 0 0 O

0

0 0 O

0

0

1

0

0

©6 06 6

-20-

$ b b &

(¢) Folding F4 about Z

(b) Folding F3 about X and
generating a maximum of
DON'T CARES in F4

and fitting NOR(X, Y, Z)

(a) Folding F2 about W

WX
Y\ 00 01 11 10
olelo

00 01 11 10

W

Y

0

1

1

ojoj|o

1

F2

R

Fig. 2.4 Sample Decomposition Using Folding Techniques

_21-

Finally, a feature is provided for ''backing-up', i.e., undoing
a certain amount of previous work. When first writing the program to
implement the method, the ability to ""back-up' was considered neces-
sary because it could not be a priori shown that the synthesis would
always converge. Although convergence is guaranteed for NOR,
NAND, and minority gates, thus making use of the backing-up feature
unnecessary, the feature can be nevertheless used in striving to improve
the optimality of the resulting configuration.” Thus, from any given
decomposition stage, the backing-up feature can be used to modify -

an earlier decomposition stage so as to obtain better results.

CHAPTER III

IMPLEMENTATION

A. PROGRAMMING CONSIDERATIONS

The reason for implementing the method described in Chapter II
was to test the validity of the method, rather than the relative effici-
ency with which it could be carried out, Time limitations imposed
restrictions on the amount of programming effort. Consequently, it
was decided to use the AED-03 programming language for the bulk of
the program, with selected short subroutines written in FAP4 (IBM 7094
Assembly Language). AED-0 is an ALGOL-like symbolic programming
language which has additional facilities (in the form of systems of
special subroutines) for computer-aided design, such as easily-
programmable free-format input-output and dynamic storage allo-
cation, AED-0 programs can be written with the sarme ease as
FORTRAN or MAD (other symbolic compiler languages), and AED-0
was chosen instead of the latter two because of its superior facilities.
No claim is made as to the efficiency of the AED programs, nowever,
since the prime consideration was to achieve a working program.
Certain purely logical (bit-manipulating) tasks were written as sub-
routines in FAP, a far more natural language to use in those cases.

Time limitations, together with initial uncertainties about the
extent of interaction nece ssary for the method to be properly imple-
mented, dictated that considerable emphasis be placed on the inter-
action aspect of the system. From the standpoint of trying to write a
program as rapidly as possibie, a decisicn that would be very involved
to program would be better left to the discretion of the operator,
especially if it were based on intuitive, rather than computable factors.

From the standpoint of a priori uncertainties in implementing the

method, it was deemed expedient to give control to the operator when-
ever a sound algorithm could not be devised for the computer.

It should be borne in mind, therefore, that the programs described
in the remainder of this chapter do not represent highly efficient
programming or interaction systems, but are a rather expedient imple-

mentation aimed at testing the validity of the synthesis method. Because

_23-

-24-

1-AavyD 10} ainjonys woiboid |pseuss) |°g °Bi4

NITGN3 — 1NWiad —

3OVdS — AdNN4—

1NOQDe — 11dNd—

1N0I128 — J¥AD4—

1NODOE — 300230 —

13 1NO150 — LIANOD—
qQIoMy INOINI — YVdWO D —
MOHI13S OVSSIW J xU._.Z<|_

JOVIOVd QIOMY

NIOWOD N39¥3d

N/

81740

dSNN4
xmm<._.
<<>mZm0

ac094
1dNI4 ouo“_m
LdNIL / \
\ _

X

JOVAIOVd INdINO

JOVADVd dv4

L13dl wyovia

IUme
AOW3IY
4 Z_ 4l

YJLSYW

~-25-

of this reason, no attempt is made to explain the fine details of each
program. Instead, a more general description of all the programs
and their interconnections is given here. Important data structures
used and referred to in the remainder of this chapter are illustrated
in Appendix I, and detailed flowcharts of each important program in
CADD-1 are given in Appendix II. Flowcharts for the programs in
CADD-2 are not given, due to time limitations and their resemblance

to CADD-1 flowcharts, *

B. GENERAL PROGRAM STRUCTURE

1., CADD-1

The general program structure and hierarchy is given in Fig. 3.1.
It should be noted that only the AED programe are included in the tree-
like structure. This structure indicates the origin of calls on each
subroutine, MASTER being the main program. The FAP package is
the group of subroutines written in FAP for bit-manipulating purposes
and each subroutine is called from within one or more of the AED
programs. The OUTPUT package is a set of routines, provided as
part of the AED programming system, for free-format output. The
chief advantage of the OUTPUT package over the standard FORTRAN
format statement is that prinied ouiput can be specified character by
character, rather than a line at a tirne, considerably simplifying the
programming of the machine-to-man interaction,

The RWORD package is ~nalogous to the OUTPUT package,
excepi tnal it 1s {ov frec-format inpit | allowing the operator to type
commands and data in a form rnost convenient to him. In using the
RWORD package, initially SETHOW is called to establish the source
of the input data (keyboard, tape, disc file, etc.) and subsequently
whenever it is desirable to clear out the input buffer. Each call on
RWORD gets a new '"item'' from the input buffer, stores the "item"

in BCD form in a temporary location, and returns a pointer to this

“Copies of all programs are available from Paul J. Santos, Jr. at
the Electronic Systems Laboratory.

-26-

location. An 'item''is defined by parsing the left end of the input
buffer according to the character table RT. This table indicates

the type of each BCD character and further indicates with which other
characters it can be grouped to form an item. An item is a sequence
of characters which fit together, with delimiters on either side.

Since one or more consecutive blanks or a carriage return are con-
sidered single delimiters, a satisfactory manner of inputing all items
is to type them one after the other, separated by blanks, and on con-
secutive lines if necessary. All items will be in BCD form, which is
suitable for interpretation of commands and of BCDdata. If numerical
data is expected, the BCD form is converted to an integer number by
use of the subroutine DECODE.,

The programs MASTER, INP, INF, MFP, SFP, and DEL, within
which allthe interaction takes place, are each equipped with a separate
command structure, This structure enables the program to ask for
and interpret a command from the operator and then branch to the ap-
propriate executive subsection. Within the subsection there may be
further requests for commands and /or data, and when the necessary
processing is completed, control is returned to the main section
which requests another command.,

Dynamic storage allocation is handled by means of three sub-
routines, FREZ, FREC, and FRET, supplied also as part of the AED
system. FREZ sets aside a block of consecutive computer words
from free storage and returns a pointer to them so that they can be
used to hold newly generated data, FREC is similar except that the
block set aside from free storage is made identical to an already
existing block. FRET returns blocks which are no longer needed to
available free storage. A '"'pointer' is a variable whose value is
some absolute location in core memory which is the address of the
first word of a block.

All reference to blocks of free storage, for both storage and re-
trieval purposes, is made through pointers to the blocks. This
referencing is further aided by the AED '""bead structure'' facility,
which allows a component of a free -storage block, specified by the
position of the word within the block and the position of the component

within the word, to be declared and used on any pointer.

-27-

All data which is referenced from more than one program is

assigned a location in COMMON storage, in order to eliminate the

need for transmitting it as arguments in subroutine calls. The program

variables so used are as follows:

1.

10.

STATUS - indicates the present status of the synthesis with
respect to specification of function to be realized and blocks
to be used. STATUS takes on four values: 0 - beginning;

1 - function specified, but no blocks specified; 2 - function
and some blocks specified; 3 - decomposition begun,

INVARS - number of input variables.

INPTVARBS - pointer to block of storage containing variable
names,

MFN - pushdown stack containing pointer to current function
specification,

CBLK - pushdown stack containing pointer to building block
(in tree) under consideration,

BBLK - pointer to building block directory.
LIBR - pointer to building block library.

NIL - pointer which indicates termination, either bottoms of
stacks or ends of string-pointer lists.

PSTATE - indicates the present state of the decomposition:

0 - decomposition has not begun; 1X - select block to realize
function on input X; 2X - select subfunction on input X;

30 - decomposition done.

TRUNK - pointer to head of block diagram (block that realizes
output functionj,

Execution of the program begins with MASTER requesting a

command. MASTER will accept seven commands, six of which cause

it to call subroutines INP, INF, MFP, SFP, DEL, and TER, and one

which prints out these commands in case the operator has forgotten

them, *

INP is the input subroutine, MFP and SFP are the subroutines

which carry on the decomposition, INF and DEL serve to support the

synthesis effort, TER ends the execution of the program. MASTER

x
A typical feature of all the command subroutines.

-28-

serves as a junction point for the transfer of control from one of the

above mentioned subroutines to another during the course of synthesis,

2, CADD-2
The general program structure for CADD-2, similar to that of

CADD-1, is given in Fig. 3,2, CADD-2 makes use of a large number

MASTER
INF MFP DIEL ITP
|
DIAGRM/ \ REMOV FUNSP
|
IPFIT TRAVEL BGOOD COMPAR
GENSYM
CONVRG SFDCD
FNFIT CORREL
ITMPIC
INDEPN TABFX
DTABLE
TWIXT
KLUDGE PACKAGE FAP PACKAGE RWORD PACKAGE OUTPUT PACKAGE
|_pLOT I:FCVRT RWORD | MESSAG
L INVIS FUNPK SETHOW L INTOUT
L SETPT L ocTouT
[SGNON L BcQOUT
L LAYOUT L BCIOUT
| PACKED L~ BCDOUT
L LIN L SPACE

— ENDLIN

Fig. 3.2 General Program Structure for CADD-2

of utility subroutines not mentioned in the figure which are supplied
along with all the other AED-0 programming packages. The discus-
sion of the CADD-1 structure applies to CADD-2 as well, with the
following exceptions,

The RWORD package was reduced in size -(and flexibility) in order

to accommodate the needs of CADD-2 without exce ssive program

-29-

length. The latter version of RWORD reads "items' one at a time
from the input buffer. An "item' is any grouping of non-blank
characters delineated by blanks; thus the character table is made
trivial and the processing considerably simpler.

In common storage, the older INVARS and INPTVARBS are in-
corporated into new INVARS, LIBR is deleted, and FNS, which is a
string list of all previously realized functions, is added., PAGE and
FITLIST are also added to common, the former to indicate the current
page of the decomposition table displayed on the cathode ray tube, and
the latter to point to the top of a list of "fits'" for the current sub-
function,

The "KLUDGE'" package mentioned in Fig. 3.2 is the set of
routines which enables the programming of a visual display., The
display is used as a ''fast typewriter' in order to reduce interaction
time. The two AED programs that generate displays are DTABLE
and DIAGRM, displaying respectively the up-to-date decomposition

table and the circuit block diagram.

C. PROGRAM OPERATION

1. CADD-1

a. Input Phase The first subroutine to which MASTER transfers
is normally INP, INP permits the input and editing of both the function
to be synthesized and the set of building blocks to be used in the
synthesis, The function must be specified before the blocks, and may
be cdited 2t any time thereafter until the actual decomposition process
begins. Blocks are specified one at a time and may be edited at any
time provided they haven't been used in the decomposition.

The function is specified by giving the number and names of the
variables and the values of all the terms (rows) in the function truth
table. The latter can be specified in two ways, depending upon the
nature of the function. One way is to first set all rows to the same
value, and then indicate which rows have different values, Rows are
coded in natural binary sequence., Thus, for example, F(W,X,Y,Z) =
WYX + XYZ is specified by first setting all rows to ZERO and then
setting rows 7, 14 and 15 to ONE. The other way is to indicate,

row by row, the values of the function. This information is first

-30-

stored in the unpacked form (UNPACKED FN) shown in Fig. Al.3 of
Appendix I, and when completed, it is converted to the packed form
shown in the same figure. Packing and unpacking of functions is
carried out by the use of the FCVRT and FUNPK subroutines, re-
spectively. Finally, all the information concerning the function is

put into the form of a FUNCT (also shown in Fig. Al.3) structure, and
the pointer is stacked onto MFN to initialize the state of the decompo-
sition, A FUNCT block is of length n+ 2, where n is the number of
variables on which the function depends. The first word of the block
contains n, the second word contains a pointer té the packed function
description, and the remaining n words contain numbers which
indicate what the variables are and in what order of significance they
appear, (the further down in the block, the higher the order). To
find the variable occupying a certain position, the number in that
position is added to the pointer INPTV ARBS and the new pointer
becomes the location of the BCD variable name. FUNCT structure

is used through the decomposition process for storing all information
concerning a particular function (or subfunction).

A block is specified by first giving its name and number of in-
puts, and then its truth table, in a manner similar to that for function
above. The data structure for the block directory and the associated
block library is shown in Fig. Al.2 (Appendix I). Every time a new

block is specified, the following occurs:

1. Increase BLOCKNUM (total number of blocks) by 1.

2., Change MIP or MAP (minimum or maximum number of in-
puts of any block) if new block affects them,

3. Create a new entry at the beginning of both the block
directory and the library. PDKFN points to the packed
function representing the truth table for the block.

4. Create a generator list in the form given by FSPEC in

Fig. Al.3 and insert the pointer in the FSPEC component
of the block entry.

5. Find all symmetries of inputs, putting this information in
the form of the list SYMLIST (Phase 1) given in Fig. Al.l
(of Appendix I). This form is used since it facilitates the

incorporation of subsequent symmetries without affecting
the already existing structure.

-31-

" 6. Convert the SYMLIST into the form (Phase 2) of the same
figure.

7. Using the new SYMLIST, generate all possible nonredundant
permutations of inputs and classify them in the form of the
tree-list to which PERMUTATIONS of Fig. Al.1l points,

8. Create the list COMBLIST which uses PERMUTATIONS to
generate all permutations and their associated packed
functions.

9. For each permutation, generate the functions associated with
all possible combinations of negations of the inputs, and add
them to the list of functions under the library entry for the
block if they are new functions. Thus, the library is sub-
divided according to blocks, and each block points to a list
repre senting all possible functions realizable with that
block., Furthermore, each element of the list contains an
input code (indicating permutations and negations) and a
pointer to a packed function.

The above steps make use of the following additional subroutines:

FUNSP - creates the generator list.
CRLIB - creates the block library.
PERGEN - generates PERMUTATIONS in CRLIB.

COMGEN . generates COMBLIST in CRLIB.

COMPAR - compares and merges terms for use in FUNSP,

PERMUT - permutes values of inputs within a generator term
for use in generating SYMLIST in CRLIB.

CONVRT - converts terms from one- to two-bit mode for use
by FUNSP,

INP - can be re-entered at any time during the decompo-

sition for the purpose of specifying new blocks or
editing oid unes which have not vet been used;
further decomposition will then be based on the new
block directory and library.

b. Decomposition Phase After the function to be realized and

the set of blocks to be used have been specified within INP, control is
returned to MASTER. The main course of the decomposition and
synthesis then involves alternate calls on the subroutines MFP and
SFP, with occasional calls on the support routines discussed in

Section C.

-32-

MFP is called whenever the state of the decomposition process -
requires that a choice of block be made to realize the current function
specification. SFP is called to handle all matters pertaining to the
decomposition of a function using a block selected by MFP, SFP and
MFP operate in such a way (using the common variable PSTATE)
that only the proper one can be entered at any given time. At the
beginning of the decomposition process, MFP is called to decide on
a block to realize the given (original) function. Then, SFP is called
to decompose that function into subfunctions, one or more of which
may require a new call on MFP and consequently on SFP., This
process continues until SEFP realizes all subelements of the block
diagram tree, without further calls on MFP, at which time the
process is backed up to the level of the output block with no more in-
puts left unspecified.

MFP contains commands which allow the user to find out the
present objective (i.e., the input and block associated with the current
function), to find out the theoretically best block to use, and to
specify which block to actually use. ‘

The be st block to use is found by applying the subroutine BGOOD
to every block in the directory and noting the one which produces the
highest value. The program gives BGOOD the number of ONEs and
ZEROs of the function, as well as information concerning the gene-
rators for each block; the user gives it four weights (DCWT,
CONSWT, VARWT, and INPWT) which are used to weigh the average
number of DON'T CARE s in the generator lists,the average number of
constraints in the generator lists, the elements of that list and the
number of inputs of each block, respectively.

When a decision is finally reached concerning the block to be
used, a new element is (a) added onto the previous tree structure,
(b) connected to the input entry in the previous block (specified by
PSTATE), (c) given a unique name generated by the subroutine
GENSYM, and (d) filled in with all the proper initial information,
such as number of inputs, type of block, and output function. A de-
composition table is created and filled in with all initial restrictions
and the generator table is initialized to contain all generators.

Finally, control is returned to MASTER with PSTATE set to begin
decomposing the function on input No. 1,

-33.

At this point it seems appropriate to explain in detail the data
structure needed to contain the growing tree of the block diagram
and intermediate decomposition results., A typical element in this
structure is illustrated in Fig. Al.4 of Appendix I. The main block
consists of n+ 2 words, n beingthe number of inputs of the block.
In the first word, SPEC indicates whether or not the entire block has
been fully realized through all of its inputs, OUTFN is a pointer to a
FUNCT type structure specifying the function realized at the output
of the block, INPUTS is the number of inputs to the block, and NAME
is a pointer to the BCD name of the element (of the form ANDQ04,
OR021, NORO15, etc.). In the second word, TBL is a pointer to the
decomposition table and BLKTY is a pointer to the building block
directory entry of that type of building block, The third through n + 2
words correspond to the first through n inputs, and consist of:
SPEC, which indicates if the subfunction on that input has been
realized; INPFN, which, if the subfunction is realized by another
block, is a pointer to a FUNCT type structure specifying the sub-
function; INPCODE, which indicates whether the subfunction is
another block (4), a negated variable (3), a variable (2), or a constant
(1); and NEXTBLK, which is (a) a pointer to a similar element of the
structure if the subfunction is realized by a block, (b) a pointer to the
BCD name of a variable if the subfunction is a variable or its negation,
and (c) 0 or 1 if the subfunction is constant ZERO or ONE, An
element block which has been completely specified is stripped of its
decomposition table, leaving only the structural skeleton in finished
portions of the block diagram. The decomposition table consists of
n+ 1 words. In the first word, GEN is a pointer to the generator
table, and FN is a pointer to an UPKDFN-type structure containing
the function specification for the block. The remaining n words
correspond to inputs 1 through n and each contain SPEC, which
indicate s if the input is filled (note: the input may not be realized yet),
and COLL, which is a pointer to another UPKDFN-type structure con-
taining the partially specified or complete subfunction. The generator
table is divided into two parts to accomodate the case when there are a
large number of ZERO- or ONE -generators for a certain type of

block, but normally only the first half, to which GEN points, is used.

_34-

Each half is of the same length as the UPKDFN structures, thus
giving a generator specification for each term of the function, SPEC
indicates when only one generator remains for a given term of the
function, thus fixing all subfunctions in that row (term). A 1 in the
leftmost (33rd) bit of GENCODE indicates that the function has a
DON'T CARE in that term, whereas a 1 in any other bit position
(counting from right) of GENCODE means that that particular ZERO
or ONE generator is still valid for the function term. Thus, a term
containg ZERO (or ONE) initially contains g 1l's in its rightmost g
bit positions, corresponding to the g ZERO (or ONE) generators in
the block specification; furthermore, initial restrictions on certain
columns (inputs) are determined from these g generators. As the
decomposition table is gradually filled in, added restrictions limit
the choice of generators (which are erased bit-by-bit from GENCODE),
until only one generator is left and the row is completely filled in,

SFP has a large number of commands designed to handle all
aspects of decomposition and to provide some aid to the user in making
decisions concerning the decomposition. These commands accomplish
the following tasks: indicate the present objective (which input of
what block) of the decomposition; change the objective of the decompo-
sition; find all possible immediate realizations which fit the present
partially specified subfunction; find which one (s) has (have) the
highest correlation or anticorrelation factor with the main function,
decide which of these to use; fill in an item (row) of the present sub-
function; travel on to further decomposition once an input is completely
filled; give the state of convergence of the present subfunction; rotate
the variables of the function in order to better detect some foldings;
and print out the Karnaugh map of any library function.

The information concerning which input (hence, which subfunction)
is currently decomposed is contained in PSTATE: Once an input has
been completely realized, it cannot be made an object of SFP. When-
ever the subfunction being decomposed changes, FITLIST, which is
the string-pointer list indicating the immediately realizable functions,
variables, and constants that fit into the present subfunction, is

erased., Correlation, anticorrelation, and the decision as to which

-35-

immediately realizable subfunction must be chosen, work only with

a non-empty FITLIST. These details, and a number of others, are

ommitted from the present discussion so as not to confuse the main

thoughts,

A typical mode of operation in decomposition, for each new input

is as follows:

Find all fits. If nothing fits, go to Step 5 below.
Correlate or anticorrelate,

If not satisfied, ¥ permute variables and go back to Step 1.
All permutations of variables can be achieved.

4., If still not satisfied, go to Step 5. Otherwise, specify which
immediately realizable function is desired. The input is then
filled with the selected subfunction and new restrictions are
filled in. The decomposition process may be repeated next
for a new input. If no inputs remain to be realized, and if
the top of the tree has been reached, then the decomposition
is over; otherwise, return to the higher level and look for
unrealized inputs. This process is repeated until an un-
filled input is found at some higher level or the process
terminates,

5. Fill in by hand all remaining blank items of the subfunction
using previously mentioned techniques.

6. Fold the subfunction (viathe command TRAVEL) wherever
possible and change PSTATE so that when control is returned
to MASTER, MFP will be called next,

Subroutines used during the above process and their descriptions

follows:

IPFIT - performs the task of generaiing the FITLIST,

SFDCD - performs the task of choosing an immediately

realizable function and carrying out the consequences,

KPR - prints out the Karnaugh map of a function.

GENSYM - generates a new, unique name for blocks in the tree

each time it is called,

BGOOD - evaluates the ''goodness' of a block to be used to

realize a function,

x
Satisfaction rests with the operator and involves fitting, along with
the fullfilment of certain criteria of goodness.

-36-

ANTCR - used by MFP in correlation and anticorrelation,
FNFIT - used by IPFIT in finding fits,

Many times it is difficult for the user to be fully aware of all the
details of the process, especially after a permutation of variables or
in trying to fill in a subfunction by hand. Moreover, the user may
wish to "back up" in order to achieve a better realization. Both
these cases are considered as parts of the support phase for the de-
composition process rather than parts of the decomposition and are
handled by INF and DEL, respectively, to be discussed in the next
section,

c. Support Phase. The support subroutines INF and DEL supply

additional information concerning the various aspects of the decompo-
sition and provide a means of retreating from a situation which is
considered unsuitable by the operator, INF can be called at any time
from MASTER, whereas DEL can be sucessfully called only when
PSTATE indicates the ''subfunction' (2X) mode. The reason for the
latter restriction is that there will be no need to '"back up' while
trying to decide what type of building block should be used in realizing
the current function, DEL enables the operator to do one of two
things: (a) Erase the entire present element of the tree, and all the
structure dependent on it, putting the state of the decomposition back
to where a call on MFN to re-realize the present function is appropri-
ate, or (b) retreat yet one step further, and place the process in a
subfunction-picking mode with reference te the tree element from
which the original element was derived. In the first case, CBLK is
unstacked and the entire present element (including its decomposition
table), together with the portions of the tree connected to its inputs,
are deleted. One input alone cannot be deleted since it normally
affects the decomposition of all other inputs. Control is then returned
to MASTER with PSTATE indicating that MFP should be called next.
In the second case, both CBLK and MFN are unstacked, thus undoing
the effect of a previous ''travel"” command. PSTATE is set to a mode
indicating subfunction selection on the particular input of the higher-
level block which was previously connected to the recently deleted
element. Control remains in DEL in case further retreat is desired.
In both cases, special provision is made for treating the process when

it is backed up to the top of the tree.

-37-

INF is a completely passive subroutine in the sense that its only
purpose is printout of information., INF permits the operator to ask
for the following information: Status of decomposition; number of
input variables; names of the input variables; Karnaugh map of
current main function; number and names of building blocks;
members of block library corresponding to a given building block;
state of decomposition; condition of present tree element (block);
condition of any element in tree; Karnaugh map of any completely
specified input function to present element; decomposition table,
including generators for present element; and current block diagram
(tree). By far, the most frequently requested information concerns
the decomposition table, since it changes every time a new item of a
subfunction is filled in, or whenever the function is rotated,. Norrnally,
there are several repeated transfers of control from SFP to MASTER
in the course of decomposition of a single function, since when
filling in a subfunction by hand the precise state of the table must be
known,

Subroutines used by INF and DEL and their descriptions follow:

NSRCH - searches the entire block diagram tree for an

element with a given name. Used by INF to give the
condition of any element in tree.

DIAGRM - prints out current block diagram, It is a good illus-
tration of the superiority of the OUTPUT package
over FORMAT statements, since several parts of
the same line may be printed out by successive
recursive levels of DIAGRM, which is a recursive
procedure,

REMOV - deietes an eiemciit and all its gubelemeants from the
tree, deleting also the decomposition table of the
top element,

When the synthesis process has been completed, the circuit

realization can be obtained via a call on INF to print out the final

block diagram.

2, CADD-2
a. Input Phase., The input phase of CADD-2 operates much in
the same way as that of CADD-1, although certain details are different.

An alternate method of inputing which saves interaction time is available

-38-

for both function and block specification. This method consists of .
writing a small program in a standard format which specifies com-
pletely a function or building block, and compiling this program

prior to execution of CADD-2, Then, whenever a specification is
called for within CADD-2, the particular program which is desired

is loaded into core memory. This method is particularly helpful for
blocks and function which are going to be used frequently (such as
standard logic gates) since the effort expended in writing the program
is small compared to the effort expended in re-specifying the block or
function for every execution of CADD-2 in which it is used,

A new parameter which has been added to the block specification
is fan-out, This parameter restricts the number of times a specific
subfunction can be used within the block diagram by restricting the
fan-out of the block which realizes that subfunction.

The '"function specification'" format for CADD-2 differs in
various respects from its predecessor (see Fig. Al.5). Besides the
fan-out restrictions, all functions are kept in canonical form, i.e.,
with all the variables in the same order, and with the component
VCODE to indicate the variables on which the function depends. Under
the arrangement of the decomposition process of CADD-2, all
rotation, folding, etc., is performed dynamically, so that the functions
are stored in canonical form only, therefore making easier the testing
for fits.

All of the programming which generates the block library in
CADD-1 is absent from CADD-2, since no such library is now used.
This approach greatly simplifies the concepts, computing time and
storage used in decomposition,

All subfunctions that become fully realized are placed in an
ordered list to which FNS points. When a subfunction is being treated
for "fits'", elements of the FNS list posessing the same variable de-
péndence are checked, hence, it is now possible to fit an already

existing function and to permit a fan-out of more than one for blocks
picked from FNS,

b. Decomposition Phase. The main differences between CADD-1
and CADD-2 decomposition lie in the subroutine SFP, MFP is virtually

unchanged, except to accomodate the new programming details, and to

-39-

speed up the interaction, such as an automatic block selection if there
is only one block in the directory. SFP for CADD-2 is a self-contained
working unit, with need to transfer to INF only for displaying the current
block diagram. This is done by having the current decomposition table
constantly displayed on the CRT, with any occuring changes immedi-
ately updating it, Most of the CADD-1 SFP commands remain in
CADD-2, unchanged in intent, but somewhat changed in content, The
subfunction fitting command has improved interaction abilities and no
longer checks a function library, but rather checks the FNS list
(along with constants and variables). There are many interaction time
improvements in the (anti) correlation, subfunction selection, manual
table filling, traveling, and convergence information command, as
well as changes in programming due to the new data structure. Two
new commands were added, (a) to give the degrees of freedom (lack
of dependence on input variables) of the current subfunction, and to
fill in the table in such a way as to preserve this independence, and
(b) to turn the pages of the decomposition table on the CRT if the table
is too long to be displayed at once.

A slightly revised technique for decomposing a subfunction within

SFP proceeds as follows:

Find all fits. If nothing fits, go to Step 4 below.
2, Correlate or anticorrelate.

If nothing is satisfactory, go to Step 4. Otherwise, fill in
subfunctions that gave best factor in (2) above. Return to
Step 1. for the next subfunction or go the next higher level.

4. Find independences. If none exist, go to Step 5, otherwise,
make the subfunction inde pendent of one or more of its

variables,

5. Fill in any remaining entries in the table as judiciously as
possible and '"'travel'.

A number of other details of CADD-2 are omrmitted, since they
only differ slightly from CADD-1.

c. Support Phase, The DEL Section of CAD-2 is identical to

that of CADD-1, except for details concerning the new data structure.
The INF Section is no longer the same as that of CADD-1, since it
only need display the current block diagram of the combinational

system under synthesis.

CHAPTER IV

RESULTS AND CONCLUSIONS

A. CADD-1

1. Limitations

The CADD-1 implementation of the generalized synthesis method
given in Chapter III suffers from a few limitations. These limitations,
along with methods for eliminating them, are discussed in the present
section. A large part of these suggestions are incorporated in CADD-2.

One major limitation is that the synthesis process consumes far
too much real time to be commensurate with practical computer-aided
design. The extra time is due mostly to waiting while the console
(typewriter) types out advice and data, and to a smaller extent due to
certain tedious input tasks, such as filling in a long subfunction by
hand. The problem can be traced to two distinct sources., The first
is that there is too much interaction (overused in CADD-1 so as to
allow the operator to intervene in all critical tasks), Experimental
use of CADD-1 indicated that much of this freedom was unnecessary,
and should be eliminated by programming, rather than by interaction.
Furthermore, much of the CADD-1 printout was not usually required
for the decomposition process. The second source of unnecessary
delay is typewriter speed. For example, the decomposition table for
a six-variable function covers a complete page and consumes five
minutes of typing.

In order iu reducc interaction amount and time, the following
changes were deemed appropriate.

l. Program many of the choices now left to the operator,.
Experience has shown where this can be done with safety.

2. Abbreviate much of the printout, and include options to eliminate
printout completely at the operator's discretion.

3. Include ability to chain many commands. To make the process
even faster, a decomposition strategy which is considered
successful can be included in the input phase along with the
building blocks, The program can then simply follow the
strategy under normal conditions, resorting to interaction
only when special circumstances arise,

-41-

-42-

4. Add features which enable a short command to accomplish
the same objectives as a previously long and tedious input
operation,

5. Use a cathode-ray tube graphical display instead of the
typewriter for unavoidably long outputs, such as decomposi-
tion tables and block diagrams. This feature alone can
cut the real-time usage by almost fifty percent,

Another major limitation of the CADD-1 implementation is that

it is not thorough enough in checking possible moves. Instead, it
puts the burden on the operator, who can either go through the
tedious process of permuting variables, folding, etc., or simply
make quick but arbitrary decisions thus probably missing a '"better"
solution. Many times the operator is forced to do some tedious
processing himself since no command will give him this information.
Such processing might involve the determination of dependence of a
function on certain variables, or the configuration of an immediately
realizable library function within a subfunction.

Since CADD-1] uses a very small amount of computer time (about
fifteen seconds for a four-variable function), some greater searching
and processing capability can be delegated to the computer.

Most of the above discussion had indicated a probably increase in
complexity of the program. Since the CADD-1 program is quite large
(about two thirds of core memory), simplifications and use of essential
features should be considered. One possible simplification is to
eliminate the library functions, since they reduce the decomposition
by one level, i.e., they eliminate the need for an extra call on MFP
and SFP and the filling in of variables. Thus INP can be considerably
simplified, and CRLIB and its tributaries can be eliminated. SFP
would then be free to do a more perceptive analysis of each function
and its possible decompositions, no longer having the added task
brought about by library functions.

Finally, many improvements of a minor nature can be made in
the implementation, such as the standardization of packed components,
variable names, data structures, and procedures which vary slightly
from each other and the rewriting of many logical subprocesses in

FAP rather than AED,

-43.

2., Comparison with other Methods

As mentioned in Section C, Chapter I, a universal basis for
comparison and evaluation of results of the general synthesis method
is the ""brute force' method of converting the synthesis problem to
the form of a two-level classical synthesis realization. Nine test
cases and their results are shown in Table I. In each case, CADD-1
gives a more optimal solution than the '""brute force' techniques. *

Several things should be noted about the results of Table I. First,
the cases in which CADD-1 is superior to other methods of synthesis
are those which deal with "unusual" sets of building blocks, such as
Cases III and IV. The reason for this is that these sets of blocks
lend themselves less easily to the (Boolean) algebraic manipulations
(which underlie the ""brute-force' method) than the more standard
AND-OR, NOR and NAND gates which have a simpler Boolean
algebraic structure, Second, in cases which deal with more con-
ventional blocks, CADD-1 gains advantage from its capability to
arrive at more than two-level realizations, Thus, in Case VI, the
superiority of CADD-1 lies in being able to construct a symmetrical,
four level OR-AND-OR-AND tree, whereas the "brute-force' method
needs two extra ANDs in the necessity of maintaining only two levels
in the tree. A similar though less symmetrical situation occurs in
CASE V, where the total number of block inputs decides the more
optimal solution,

On balance, it can be said that CADD-1 represents a reasonable
izl sten tao the solution of the generalized synthesis problem for

combinatorial digital networks.,

3. Effect of Human Operator

One final question that must be asked is: What is the dependence
of the system upon the operator? Or, similarly, what is the effect
of the skill of the operator upon the result? There is no doubt that
operator skill affects the results in a very positive way; this skill,
however, can be acquired after some use of CADD-1 because of the

great adaptability of the human brain,

e

R

Where it is assumed that both complemented and uncomplemented
variables are available.

-44-
B. CADD-2

At the time of the writing of this report, the programming system
to implement CADD-2 still contains several program errors which
inhibit its full operation. Few test cases can be run without using
the areas of the program which contain these errors, Consequently
a complete list of long examples is not included in this report., On
the other hand, real-time used for CADD-2 based on a small number
of simple examples shows a five-to-one reduction over the time
used by CADD-1 for the same examples. A sample run of CADD-2,

using the same example as that used in CADD-1, is given in Appendix D,

-45-

TABLE 1

Results of Test Cases for CADD-1

NO. OF BUILDING REALIZATIONS
CASE VARIABLES FUNCTION BLOCKS CADD "BRUTE-FORCE"
I 6 2{0,5,9, 3-INPUT 40 NORs 48 NORs
13, 14, 24, 26, NOR
32,33, 34, 35,
40, 51, 60)
I 5 Z(0,5,9 3-INPUT 16 NANDs 28 NANDs
13, 14, 24, 26) NAND
111 4 Z(0,3,4 3-INPUT 13 MINs 48 MINs
5,6,8,10, 15) MINORITY
v 4 same 3-INPUT 5 ANDs 11 ANDs
EXCLUSIVE OR, 5 XORs 11 XORs
3-INPUT
AND
v 4 m0, 1,2, 2,3-INPUT 1 3-OR, 1 3-OR,
4, 8) ANDs, 1 3-AND, 1 2-OR,
2,3-INPUT 2 2-ORs, 4 3-ANDs
ORs 2 2-ANDs
(14 inputs) (17 inputs)
VI 3 2X1,2,4, 2-INPUT 3 ORs 3 ORs
7) AND, 6 ANDs 8 ANDs
(3-input 2-INPUT
XOR) OR
VII 3 same 3-INPUT 6 NANDs 8 NANDs
NAND
Vi 3 same 2-INPUT 9 NANDs 18 NANDs
NAND
IX 3 20,2, 5) 2-INPUT 5 NORs 7 NORs

{see Sample

Run, APPENDICES

C and D)

Figure

Al.l
Al.2
Al.3

Al.4

Al.5

APPENDIX A

DATA STRUCTURES

CADD-1
Structures Used in Library Generation
Building Block Directory and Library
Common Structures Used During Decomposition

Typical Tree Element

CADD-2

CADD-2 Data Structures

-47-

48
49
50

51

52

~-48-

uolpiausd) Aioiqi uj pasn s2angonays |0y °Bid

(43040 G31NWA3d)

LI I I T T PA7A

H30H0 H3IMO =—
{ (43040 Q3LNKH3d)

(43040 J31NWYH3d) ﬁ

t—+ PAnsowdpf—F Lsinawod |

/ /
77
ON \kmuozo\\,_ll_ —
§I
> 7 T) N
2N H\\\ N P N._Il Y IN \\\Lll 7%
on VA 2 YA | on [Juzonol/ ‘oN /443080 f=—F SNOLLVLAWY3d |
'n IN
On On (II 3SVHd)
Pl s V= U » e—1 LSIWAS |

(P N 3 T '~ —+ On

(I ASVYHd)

-49.

Aoiqp pup Asogoa.)q yoo|g Buip(ing z°|v *Bid

"ON
INdNI_O3IN - — SINdNI N3A3S OL dN—=
LS4 | [] [] [| [[[)
«—— ¥IQYO ¥IMOT :3002 1NdNI
300D INdNI — 300D INdNI ——
(IN) N4aNd | (UN) N4adxd |
G]
b)))L
|88 |88
300D 1NdNI — 300D 1NdNI —]—
= AN P Ndawd ! Zn AN P71 Ndade ! /)
300D INdNI — 300D 1NdNI —
- AN 7] Ndade ! \J H xan - P N4aXd _Rll_
wppp,) i, v
(UN) P 218 _\\rAvINNl IXIN i SR 7 el 3811 |
{ {
INVN w S IWVN ¢
S Z 1 xaN Y | XaN_ o000
I [- AN] wnNdDO18 _u_st_
Z I~ - 7 _I
(UN) P Nagxd ! pomb) S IXaN P N4QNd | B _.ﬂ 188]

-50-

—

uoyjisodwosa Bujing pasf) seanjonijg uowwo) g*|y *Bid

—

@ 43040 ¥3IMO01

HEESEE

\

727,

(4O1VH3N39 INO)

sve (N3ON) 14 P IN
{1IN) e wall ommtl_ {¥OLVY3IN3D 3INO)
{4 (HOLVHINIO 0u3Z)
— — - < Lon
sve |] (Navd) L4 V) (¥OLVY3IN39 0¥3Z)
1XaN [TEN Od=—1 isinuid | naond "V Paows U4~ o3as1
oL L2l e — (3002 HLONIT)
ENNSNENEEEENNEENIN]
N \ ~ y)
-—t N40d
(SHVA) ~— Lonnd | . e—F N4 aInOVg |

7/)..(.(((/

(EWY3L) (IWVN)
(2WH3L) (IWVN)
(1wHd3l) {3NUN)
(OWH3L) fe—F N4 O3%OVaNn | (IWVN)

(IF SBYVA LdN| _

-51-

[cBLk ESPEC JOUTEN(FUNCT)|NY NAME
TBL BLKTY ——
S INPFN (FUNCT)|iogd ~ NEXTBLK ~ —f—a
S INPFN (FUNCT) [INF] NEXTBLK e
U
FUNCTION INPUT | INPUT 2
— GEN /] FN(UPKDFN)
SPEQ /| COLL (UPKDFN)
fsPed /| COLL (UPKDFN) 4 — —~——_
— // N‘-—l
| GEN V1 next
—elsPEC GENCODE SPEQ GENCODE
fsPed GENCODE speC GENCODE
lspsc GENCODE sPeC] GENCODE
b’W_—\—\\&
TT—

Fig. Al.4 Typical Tree Element

-52-

sainonys ojog Z-qavd §°LY *Bid

si19 82
A
r A
L 30094 [JsoNol]
- dW3IW P/ -
- dW3IW__ P4 onw3w P
-—1 dw3w__ P4 oNwan P
- dwaw_ /] ONW3w 7 1o
-—t dw3w P/ oNwIw pP-——+]
1817114
<—t=dixan_ 3] 404 Joe——{]
1n0d| 3000A | L dNid P/ N4W
<~ diX3aN_ JsswA| a8 — 1 =
1
' re-=d SN
)
R _

(SIVA)
(& TVA)
(€ IWA)
(2VA) 29
(1IVA) 29 S
An_ 29 dS
29 dS
I e 29 3
<« dnd ol d8N I3S
B dNd |2l d89N 7S
-— dNd |2l d8N T[J8
- dN38 [/ 29 ..v* _
-—— d8 |7 19 — %1180
-1— dN3IW Alm d3IWVN fe——]
[————
2 (263)
N (63)
(2n) %
N (263)
(164)
N394 ('n)
15318
1no4] £ 450 [a9z —— %188
— dix3N p| d3WVN fesrte—n—F 7
-—
a3asnaA T
a3asnA 7] d3IWvN F4-
N a3snA V4 damvn —&
7
g3asnA Y/ dINVYN —F SHVANI
) —F]

Program

MASTER
INP
FUNSP
CRLIB
MFP
SFP
IPFIT
SFDCD
INF

DEL

APPENDIX B

DETAILED FLOW CHARTS

-53-

Eage

55
55 thru 57
58
59 and 60
60 and 61
62 thru 65
66
67
68
69

-54~

CONVENTIONS

PROGRAM ENTRY

ANY SECTION OF THE
. PROGRAM CONSIDERED

|
-0
O

SUBROUTINE CALL

INTER-PROGRAM
CONNECTION

§ DECISIONS,
BRANCH POINTS

COMBINED
j INPUT-OUTPUT

RETURN TO
CALLING PROGRAM

-55a-

INITIALIZE VARIABLES
IN COMMON

!

CLEAR INPUT BUFFER

—
TYPE
COMMAND

o

COMMANDS

/

NOT A
COMMAND

rCLEAR INPUT BUFFERJ

TYPE
COMMAND

/

ALL
COMMANDS

RETURNING

NOT A
COMMAND

-56-

CANNOT e os no]
CHANGE | =8TATUS = 34— /STATUS # 0 HOW MANY »| STORE IN
FUNCTION VARIABLES INVARS

no J

3 INPTVARBS =
EDIT FUNCTION FREZ (INVARS)

\ WHAT ARE
STORE NAME VARIABLES
IN INPTVARBS NAMES

HOW FUNCTION
IS SPECIFIED

INPTFN = FREZ
(2 POWER INVARS)

UNPACK MFN | ™ yes
INTO INPTEN

TINPT
(INPTFN, 2 POWER
INVARS-1, TRUE)

FINPT (INPTFN,
INVARS)

PACK INPTEN
BACK INTO MFN

FRET INPTFN

FUNCTION
EDITED

TINPT
(INPTEN, 2 POWER
INVARS-1 FALSE

SET UP FUNCTION
SPECIFICATION
USING INPTFN

FRET INPTFN

ISTAC'K ONTO MFN |

STATUS =1

-57-

o |
FUNCTION
FIRST

I = ENTRY

BLOCK HAS ALREADY
BEEN SPECIFIED DO
IYOU WISH TO EDIT

ASK FOR AND STORE
THE BLOCK NAME AND
NUMBER OF INPUTS

INS = NO. OF INPUTS]

IS NAME IN
BLOCK DIRECTORY

BLOCK NOT |
ALTERED

SET UP ENTRY IN
BLOCK DIRECTORY 1 = ENTRY
FOR NEW BLOCK

HAS BLOCK

CANNOT BEEN USED

CHANGE NOW

i i

BLOCK BEING
ENTERED SPECIFY
TRUTH TABLE

| INPTEN = FREZ (2 POWER leﬂ

!

IUNPACK BLOCK SPECIFICATION INTO INPTEN I

INPTEN = FREZ
(2 POWER INS)

HOW TO
SPECIFY
BLOCK

| TINPT (INPTFN, 2 POWER INS-1, TRUE)j

FINPT (INPTFN, 1
INS) I PACK SPECIFICATION BACK INTO BLOCK INPTFNI

N ‘1 !

A
| ERASE OLD LIBRARY ENTRIES |

TINPT
(INPTEN, 2 POWER

INIC_1 CAlQED
\ -~ nALSE)

PACK INPTFN INTO
PLACE IN BLOCK IFUNSP (INPTEN, 1, INS) |

ENTRY

| CRLIB (INPTFN, 1, NIL)]

FUNSP (INPUT FN,
1, INS)

FRET INPTFN

BLOCK
EDITED

CRLIB (INPTFN,
I, NIL)

FRET INPTFN

1

/
BLOCK STATUS = 2
SPECIFIED

-58-

FUNSP (INPTFN, BLOCK, INSD

:

PUT ALL ELEMENTS OF INPTFN
F__’IGO THROUGH LOOP FORR=0 ANDR = ﬂ-—’ WLlJ-IlCH = R ONTO STACK

WNLOAD THE STACK INTO WORKSPACE

GO THROUGH LOOP AS LONG CONVERT WORKSPACE
AS THERE IS IMPROVEMENT TO TWO-BIT MODE -

:

GO THROUGH LOOP FOR EVERY
ELEMENT (1) IN WORKSPACE

!

GO THROUGH LOOP FOR EACH
" REMAINING ELEMENT (K)

yes

'—FUT ONTO STACK AND MARK K

PUT ONTO STACK

GET RID OF OLD WORKSPACE, MAKE NEW
ONE, AND UNLOAD STACK ONTO T

"—‘EREATE LIST OF R GENERATORS]

‘

Q—ENCORPORATE GENERATORS INTO BLOCK ENTRY—l

PUT ZERO GENERATORS
IN WORKSPACE

.59-

{ CRLIB (INPTFN, BLOCK, NI@
SYMLIST = NIL

ONE GENERATORS >
ZERO GENERATORS

y

PUT ON GENERATORS
IN WORKSPACE

:

=lr GO THROUGH LOOP FOR EACH INPUT I

GO THROUGH LOOP FOR
REMAINING INPUTS (K) —ﬁ{iILL TEMPSPACE FROM WORKSPACE

GO THROUGH LOOP AS LONG AS
A PERMUTED ELEMENT MATCHES -
ITSELF OR ANOTHER ELEMENT

:

PERMUT INPUT | AND K
OF FIRST ELEMENT OF
TEMPSPACE (M)

!

GO THROUGH LOOP

FOR REMAINING (N)

no

PUT N ON STACK

ADD SYMMETRY OF | AND K TO
SYMLIST IF NOT THERE ALREADY

RELOAD TEMPSPACE
FROM STACK

SOME MATCH
OCCURED

EMPTY STACK

LBUILD UP NEW VERSION OF SYMLIST]

GENERATE ALL PERMUTATIONS OF
INPUTS EXCEPT THOSE THAT ARE
EQUIVALENT BECAUSE OF SYMMETRY

:

GENERATE LIST OF COMBINATIONS
AND ASSOCIATED PACKED FUNCTIONS

F_-IEO THROUGH LOOP FOR ALL COMBINATIONSI

_'{ GO THROUGH LOOP FOR ALL NEGATIONS —I

IGENERATE RESULTING FUNCTION I

IS IT ALREADY
IN LIBRARY

ADD IT TO LIBRARY

-60-

no

no

BLOCKS

NO BUILDING

@

7% | PICK MAIN
FUNCTION

NOT TIME TO

| CLEAR INPUT BUFFER

TYPE

COMMAND

(

COMMANDS

OBJECTIVE

OF CURRENT
CHOICE

— ROt A |

COMMAND

-61-

GET DCWT, CONSWT
VARWT AND INPWT

NAME OF BEST

|| COUNT UP ONES AND

ZEROS IN FUNCTION

:

le—

APPLY BGOOD TO ALL
BLOCKS IN DIRECTORY
KEEPING TRACK OF THE
BEST ONE TO DATE

COPY FUNCTION

GET NAME
OF BLOCK
TO BE USED

MARK BLOCK,
HAS NOW
BEEN USED

SEARCH THROUGH DIRECTORY FOR BLOCK |

yes

CREATE NEW ELEMENT

no
NOT SPECIFIED

FROM MFN]
RO MEN TO ADD TO TREE STRUCTLRE
GENERATE NEW SET UP INITIALIZE DECOMPOSITION TABLE,] [WARN IF ANY
NAME FOR Lo DECOMPOSITION |—siFiLL IN IMMEDIATE RESTRICTIONS, INPUTS ALREADY
ELEMENT TABLE AND SET UP GENERATOR CODES FILLED
PSTATE = 21
LOAD NEW ENTRY IN PREVIOUS
(P:S'élggﬁg’g‘cg'g;‘ e ELEMENT ELEMENT = PRESENT e PSTATE = 0
o Y ONTO CBLK ELEMENT
NEW ELEMENT)
yes

STATUS = 3

BLOCK HAS
BEEN CHOSEN

n-————-—iTRUNK = PRESENT ELEMENLI

-62-

Y5 ({0 BUILDING
BLOCKS

yes

NOT TIME TO PICK
SUBFUNCTION

[CLEAR INPUT BUFFER]

TYPE

COMMAND

A/LL_

COMMANDS

BJECTIVE

OF CURRENT
SUB-
FUNCTION

NOT A
COMMAND

-63-

WHAT INPUT TO
| BE WORKED ON
NOW

ALREADY SPECIFIED

PSTATE = OBJECT
20 + INPUT CHANGED

ERASE FITLIST

yes

IPFIT (FITLIST)

CORR = FALSE]
‘ yes
ITLIST EMPTY
DO INFITFIRST
CORR = TRUE
: O
3

GO THROUGH LOOP
FOR ALL ITEMS
IN FIT LIST

:

KEEP TRACK OF BEST
ITEM AND TS VALUE

:

SET NEGAT = TRUE
IF NEGATION OF
VARIABLE OR

CONSTANT ZERO

‘

K = ANTICORRELATION
OF BLOCK, VARIABLE
OR CONSTANT WIIH
FUNCTION

AND NEGAT = TRUE

no

CORR=TRUE

SFDCD (FITLIST,

-64-

yes

O
—®

PRESENT

INPUT FILLED

GET ROW
AND VALUE

CALL TABFX TO INSERT
VALUE AND FILL IN
FURTHER RESTRICTIONS
IN ROW

WARN IF ANY NcW|
ROWS FILLED

yes

INPUT NOT
FILLED

GO THROUGH LOOP

FOR ALL VARIABLES

FUNCTION DEPENDS
ON THIS VARIABLE

PREPARE INPUT ENTRY FOR
ATTACHMENT OF FURTHER
TREE STRUCTURE

SET UP NEW FUNCTION
SPECIFICATION AND
STACK INTO MFN

ROTATE

S

| PSTATE = 10 + INPUTJ

COUNT NUMBER

IN FUNCTION

OF ONES, ZEROS,
AND DON'T CARES

COUNT NUMBER
OF ONES, ZEROS,
AND DON'T CARES
OF SUBFUNCTION

STATE OF
CONVERGENCE

STATE OF
FUNCTION

STATE OF SUB-
FUNCTION

-65-

GET TYPE AND ROTATE ROTATE CHANGE
AMOUNT OF DECOMPOSITION [—s GENERATOR e FUNCTION
ROTATION TABLE TABLE SPECIFICATION
GET NAME SEARCH Kot
OF BLOCK BLOCK ‘
DIRECTORY SPECIFIED
GET LIBRARY
T CODE

KARNAUGH

MAP OF

LIBRARY SET UP FUNCTION

FUNCTION SPECIFICATION

IPFIT (FITLIST)

ANY RESTRICTIONS

—66-

EVERYTHING FITS
NO FITLIST
GENERATED

ZERO OR
ONE FIT

GO THROUGH LOOP

FOR EVERY VARIABLE

VAT IN CONSTANT FITS
ZERO OR ONE
INSERT IN
FITLIST
NEGATION OF
INSERT IN VARIABLE FITS
FITLIST

VARIABLE NAME

HOW FAR CAN
SUBFUNCTION
BE FOLDED

ANY BLOCK
BIG ENOUGH

NO BLOCKS HAS
ENOUGH INPUTS

‘—H

GO THROUGH LOOP
FOR EVERY BLOCK THAT
IS BIG ENOUGH

]!

GO THROUGH LOOP
FOR ALL LIBRARY

ENTRIES OF BLOCK

:

UNFOLD LIBRARY
FUNCTION AS FAR
AS NECESSARY

es
UNCTION
FITS

INSERT IN
FITLIST
(WITH FN.)

FUNCTION FITS
BLOCK NAME AND
FUNCTION CODE

no

RETURN

FILL IN FUNCTION
INTO DECOMPOSITION
TABLE USING TABFX

!

ATTACH INPUT VARIABLES
[TO BLOCK AND ATTACH
BLOCK TO INPUT ENTRY

IN TREE STRUCTURE

BLOCK NAME
AND FUNCTION
CODE

ARIABLE
NO GOOD

-67-

GFDCD (FITLIST, DONE)

DONE = FALSE

CONSTANT
VARIABLE,
OR BLOCK

AND FUNCTION
OF THIS VARIABLE

no

O CONSTANT
FOUND

FILL IN CONSTANT IN
REMAINDER OF COLUMN
IN DECOMPOSITION TABLE
USING TABFX FOR EVERY
UNFILLED ROW

‘

IATTACH VARIABLE
(OR NEGATION)

TREE STRUCTURE

FILL IN VARIABLE
(OR TS NEGATION)
TO INPUT IN [*—] INTO DECOMPOSITION
TABLE USING TABFX

ATTACH CONSTANT
TO INPUT IN
TREE STRUCTURE

WARN [F ANY

MORE INPUTS
ARE FILLED

ERASE
FITLIST

ANY INPUTS STIL
UNSPECIFIED

UNSTACK MFN AND CBLK
ATTENTION SHIFTED TO
PREVIOUS LEVEL

j—

ERASE DECOMPOSITION
TABLE AND GENERATOR
TABLE

CURRENT BLOCK
COMPLETELY
SPECIFIED

yes

PSTATE = 30
DONE = TRUE

no

TRINF

no

CBINF

no

STATE

-68-

IfLEAR INPUT BUFFERJ

TYPE

COMMAND

— |

NOT A
COMMAND

CURRENT BLOCK

COMMANDS

STATUS OF

DIAGRAM USING
DIAGRM

ENTIRE

DECOMPOSITION

NAMES OF

DECOMPOSITION
TABLE

yes

yes

yes

V
WHICH

KARNAUGH MAP

INPUT VARIABLES

NUMBER OF INPUT

INPUT

NPUTS TO

OF SUBFUNCTION

VARIABLES

KARNAUGH MAP
OF ELEMENT

KARNAUGH MAP OF
CURRENT FUNCTION

ELEMENT

FUNCTION

USING KPR

FIND ELEMENT,| /
USING NSRCH NUMBER AND
NAMES OF
BUILDING
BLOCKS
NAME OF
ELEMENT
/
NAME AND GENERATOR LIST M
AND KARNAUGH je—
INPUTS TO MAP OF BLOCK BLOCK
CURRENT BLOCK
STATE OF ALL PERMUTATIONS || NAME OF
DECOMPOSITION AND NEGATIONS BLOCK
OF INPUTS

-69-

G oLocKs |
YET
RETURN

NOT THE
RIGHT TIME

1

TYPE

COMMAND

I UNSTACK MFN
— |

| PSTATE= 20+
PREVIOUS INPUT COMMANDS

OELETE TREE FROM

CBLK ON DOWN
no |
yes

PSTATE =10 +
PREVIOUS INPUT

|

BS = TRUE

DELETE TREE
PSTATE =0

)’S
STATUS =2

—Nor A |

COMMAND

APPENDIX C

SAMPLE RUN FOR CADD-1

The following sample run is the basis for Case IX in Table 1,
Upper case characters indicate output, lower case input. In function
specifications, '2' stands for DON'T CARE,

-71-

-72-

r synths

W

TYPE. input

INPUTS WILL NOW BE ACCEPTED

TYPE. outfn

SPECIFICATION OF OUTPUT FUNCTION

HOW MANY INPUT VARIABLES

TYPE. 3

WHAT ARE THE VARIABLE NAMES

NO MORE THAN SIX CHARACTERS PER NAME PLEASE

TYPE. alpha heta gamma

PROCEED WITH FUNCTION SPECIFICATION

THE FUNCTION IS SPECIFIED BY INDICATING THE VALUE

(0 = ZERO, 1 = ONE, 2 = DON'T CARE)

FOR EACH COMBINATION OF INPUT VARIABLE VALUES. A GIVEN SET
OF INPUT VARIABLE VALUES IS TRANSFORMED INTO A 'TERM' BY
MULTIPLYING

GAMMA BY 1

BETA BY 2

ALPHA BY b

AND ADDING

TYPE 'TERM' FOR SPECIAL INPUT MODE, OR 'FULL' OTHERWISE
TYPE. term

TYPE INITIAL VALUE OF ALL ELEMENTS

TYPE. O

SPECIFY VALUES OF INDIVIDUAL TERMS AS FOLLOWS

VIT1I T2 T3 . . ¢ *V2T1T2 ., .. **

TYPE. 1 0 2 5 » »

OUTPUT FUNCTION ENTERED

TYPE. bildb

WHAT 1S THE NAME OF THE BUILDING BLOCK

NO MORE THAN THREE CHARACTERS PLEASE

TYPE. nor

HOW MANY INPUTS

TYPE. 2

21PNOR BEING ENTERED

SPECIFY FUNCTION, ONLY ZEROS AND ONES ALLOWED

THE FUNCTION IS SPECIFIED BY INDICATING THE VALUE

FOR EACH COMBINATION OF INPUT VARIABLE VALUES, A GIVEN SET
OF INPUT VARIABLE VALUES IS TRANSFORMED INTO A 'TERM' BY
MULTIPLYING

INPUT1 BY 1

INPUT2 BY 2

AND ADDING

TYPE 'TERM' FOR SPECIAL INPUT MODE, OR 'FULL' OTHERWISE
TYPE. term

TYPE INITIAL VALUE OF ALL ELEMENTS

TYPE., 0O

SPECIFY VALUES OF INDIVIDUAL TERMS AS FOLLOWS

VI T1T2T7T3 . ¢ «a*V2T1T2 ¢ o, * *»

TYPE. 1 0 » «»

BUILDING BLOCK SPECIFIED AND ENTERED IN LIBRARY

TYPE. finis infor

-73.

INPUTS WILL NO LONGER BE ACCEPTED., RETURN TO TOP LEVEL
INFORMATION NOW AVAILABLE
TYPE., mainf
THE MAIN FUNCTION IS
BETA GAMMA
00 01 11 10
00 1 0 0 1
ALPHA
01 0 1 0 0
TYPE., finis mfpic
INFORMATION NO LONGER AVAILABLE, RETURN TO TOP LEVEL
READY TO PICK MAIN FUNCTION
TYPE., decid
WHAT IS THE TYPE OF BLOCK TO BE USED
TYPE. 2ipnor
MAIN FUNCTION BLOCK HAS BEEN CHOSEN. RETURN TO TOP LEVEL
TYPE., infor
INFORMATION NOW AVAILABLE
TYPE. wktbl
THE DECOMPOSITION TABLE FOR THE PRESENT BLOCK IS
ALPHA BETA GAMMA
TERM VALUE IP1 1P2 CHOICES
000 0 0
001
010
011
100
101
110
111
TYPE. finis sfpic
INFORMATION NO LONGER AVAILABLE. RETURN TO TOP LEVEL
READY TO PICK SUBFUNCTION
TYPE. infit
CONSTANT ZERO
FITTING IS LIMITED TO BUILDING BLUCKS WiiTh G OR ™MC
2 1PNOR CODE 1 [INPUT2 = NOT GAMMA INPUT1 = NOT
TYPE., inant
21 PNOR CODE 1 ANTICORRELATION FACTOR = 2
TYPE. sfdcd
IS THE SUBFUNCTION A CONST, VARB, OR BLOCK
TYPE. block
WHICH BLOCK
TYPE. 2ipnor
CAVT MIUMRER

-2
0 0

OCOHOOHOK
et et e et
NN NN

o]
n

TYPE. 1
OBJECT 1S NOW INPUT 2 OF BLOCK NOROOO
TYPE. iInfit

FITTING IS LIMITED TO BUILDING BLOCKS WITH 3 OR MORE INPUTS
NO BLOCK HAS SUFFICIENT INPUTS

TYPE. finis infor

SUBFUNCTION CHOICE DISABLED., RETURN TO TOP LEVEL
INFORMATIiON NOW AVAILABLE

TYPE. wktbl

74~

THE DECOMPOSITION TABLE FOR THE PRESENT BLOCK IS
ALPHA BETA GAMMA
TERM VALUE [IP1 P2 CHOICES

000
001
010
011
100
101
110
111

TYPE. finis sfpic

INFORMATION NO LONGER AVAILABLE., RETURN TO TOP LEVEL

READY TO PICK SUBFUNCTION

TYPE, itplc

WHICH ROW

TYPE., 3

WHAT VALUE

TYPE, 2

TYPE. itpic

WHICH ROW

TYPE, 7

WHAT VALUE

TYPE, 2

INPUT 2 FILLED

TYPE, travl mfpic

TRAVELING, RETURN TO TOP LEVEL

READY TO PICK MAIN FUNCTION

TYPE., decid

WHAT IS THE TYPE OF BLOCK TO BE USED

TYPE., 2ipor

21POR HAS NOT BEEN SPECIFIED

TYPE. decid

WHAT IS THE TYPE OF BLOCK TO BE USED

TYPE. 2ipnor

MAIN FUNCTION BLOCK HAS BEEN CHOSEN, RETURN TO TOP LEVEL

TYPE, infor

INFORMATION NOW AVAILABLE

TYPE, wktbl

THE DECOMPOSITION TABLE FOR THE PRESENT BLOCK IS

GAMMA ALPHA

TERM VALUE IP1 IP2 CHOICES

COHOOHO M
HOOOMHODOO
HOoOKM OkOo
e el) Yy ey

'

~N

1 -2

00 0 l-2
01 1 0 0 1
10 1 0 0 1
11 0 1l -2

TYPE. finis sfplc

INFORMATION NO LONGER AVAILABLE, RETURN TO TOP LEVEL

READY TO PICK SUBFUNCTION

TYPE. Infit

CONSTANT ZERO

FITTING IS LIMITED TO BUILDING BLOCKS WITH 0 OR MORE INPUTS
2 1PNOR CODE 1 [INPUT2 = NOT ALPHA INPUT1 = NOT GAMMA

2 1PNOR CODE 4 INPUT2 = ALPHA INPUT1 = GAMMA

TYPE. sfdcd

-75-

IS THE SUBFUNCTION A CONST, VARB, OR BLOCK
TYPE. block

WHICH BLOCK

TYPE. 2ipnor

CODE NUMBER

TYPE, 1
OBJECT IS NOW INPUT 2 OF BLOCK NORO0O2
TYPE. infit

FITTING IS LIMITED TO BUILDING BLOCKS WITH 2 OR MORE INPUTS
21 PNOR CODE 4L INPUT2 = ALPHA INPUT1 = GAMMA
TYPE. sfdcd

IS THE SUBFUNCTION A CONST, VARB, OR BLOCK

TYPE. block

WHICH BLOCK

TYPE., 2ipnor

CODE NUMBER

TYPE., 4

NOR0O02 HAS NOW BEEN COMPLETELY SPECIFIED

NOR0OOO HAS NOW BEEN COMPLETELY SPECIFIED
DECOMPOSITION DONE. RETURN TO TOP LEVEL

TYPE., infor

INFORMATION NOW AVAILABLE

TYPE. trepr

NOROOO
IPl1===-=NOR0O01
IP1--==NOT BETA
IP2====NOT GAMMA

IP2=-===NOR002
IPl=----NOR0OO3
IPl===-=NOT GAMMA
IP2==-==NOT ALPHA

1 P2---=NOROOL
| P1====GAMMA
| P2===~ALPHA

TYPE, finis termn
INFORMATION NO LONGER AVAILABLE, RETURN TO TOP LEVEL

R

APPENDIX D

SAMPLE RUN FOR CADD-2

The following sample run covers the same problem as in Appendix C.
All displays, with the exception of a few that were redundant are given

at the point in the text where they occurred.

-77-

-78-

r synth?2

W

EXECUTION,

MASTER COMMAND input
INPUT COMMAND outfn

FUNCTION PROGRAM =

NUMBER AND NAMES OF VARIABLES 3 a b ¢
MAJOR VALUE AND MINORITY ELEMENTS 0 0 25 =
INPUT COMMAND bildb

BLOCK NAME two-nor

BLOCK PROGRAM norip?

NEED NORIP2

GIVE LOADING COMMANDS

TYPE. USE norip2

INPUT COMMAND finis mfpic sfpic
INPUT PICK COMMAND

itpic 11 37 » 2 4L 6 * » *
INPUT PICK COMMAND

indep
SYMMETRIC ABOUT VARIABLES 1
VARIABLE NUMBER 1 =*
INPUT 1 FILLED
INPUT 2 FILLED
INPUT PICK COMMAND

-79-

INPUT PICK

COMMAND

CONSTANT ZERO (1)

VARIABLES
INPUT PICK
(1) =
INPUT PICK
FIT NUMBER

NOT C (2)
COMMAND
=3 (2) =
COMMAND

2

INPUT 2 FILLED
OBJECT IS NOW INPUT
INPUT PICK

COMMAND

travl mfpic sfpic

infit
NOT B (3)
inant
1 (3) = 1
sfded

2 OF BLOCK TWO=-NOR1

-80-

infit sfded
VARIABLES NOT B (1)
FIT NUMBER 1
TWO-NOR1 HAS NOW BEEN COMPLETELY SPECIF{ED
OBJECT 1S NQW INPUT 2 OF BLOCK TWO-NORO
INPUT PICK COMMAND

travl mfpic sfpic
INPUT PICK COMMAND

infit
CONSTANT ZERO (1)
I NPUT PICK COMMAND itpic 1 1 0 #* 2 3 * *» =*
INPUT 1 FILLED
INPUT 2 FILLED
(NPUT PICK COMMAND

travl mfpic sfpic
INPUT PICK COMMAND

-81-

infit

CONSTANT ZERO (1)
VARIABLES € (2) A (3)
INPUT PICK COMMAND inant sfdcd

(1) = -2 (2) = -0 (3) = 0
FIT NUMBER 2
INPUT 2 FILLED
OBJECT 1S NOW INPUT 2 OF BLOCK TWO-NOR3
INPUT PICK COMMAND

infit sfded 1 travl
VARIABLES A (1)
TWO-NOR3 HAS NOW BEEN COMPLETELY SPECIFIED
OBJECT IS NOW INPUT 2 OF BLOCK TWO=-NOR2
INPUT PICK COMMAND infit sfdcd
VARIABLES NOT C (2) NOT A (3)
FIT NUMBER 2 infit stded 1
INPUT 2 FILLED
OBJECT IS NOW INPUT 2 OF BLOCK TWO-NORY
VARIABLES NOT A (1)
TWO-NORL HAS NOW BEEN COMPLETELY SPECIFIED
TWO-NOR2 HAS NOW BEEN COMPLETELY SPECIFIED
TWO-NORO HAS NOW BEEN COMPLETELY SPECIFIED
DECOMPOSITION DONE
MASTER COMMAND termn
R

mfpic sfpic

BIBLIOGRAPHY

Class Notes for MIT Course 6.252 Digital Systems Engineering.

a) Quine, W.V., "A Way to Simplify Truth Functions, "
The American Mathematical Monthly, Vol. 62, November
1955, pp. 627-631.

b) McCluskey, E.J., Jr., '""Minimization of Boolean Functions, "
The Bell System Technical Journal, November 1956, p. 1417.

Ross, D.T., AED-0 Programming Manual, Preliminary Releases
1 through 4, AED Flashes 1 through 15, and Internal Memorandum,
1964-65.

Fortran II Assembly Program (FAP), IBM Form C28-6235-2, 1963.

