

CADD: ON-LINE SYNTHESIS OF LOGIC CIRCUITS

Mīichaei L. Dertouzos Paul J. Santos, Jr.

ff 653 July 65

Electronic Systems Laboratory

CADD: ON-LINE SYNTHESIS OF LOGIC CIRCUITS
by
M. L. Dertouzos and P.J. Santos, Jr.

The preparation and publication of this report, including the research on which it is based, was sponsored under a grant to the Electronic Systems Laboratory, Massachusetts Institute of Technology, Project DSR No. 9948. This grant is being administered as part of the National Aeronautics and Space Administration Research Grant No. NsG-496 (Part). This report is published for information purposes only and does not represent recommendations or conclusions of the sponsoring agency. Reproduction in whole or in part is permitted for any purpose of the United States Government.

Electronic Systems Laboratory Department of Electrical Engineering Massachusetts Institute of Technology Carnbridge, Massachusetts 02139

The central aim of logical design is the synthesis of any given switching function in terms of given sets of elementary building blocks, for the optimization of some performance index in the presence of constrains. Although the present "state of the art" yields algorithmic methods for the solution of certain specific instances of the problem (such as minimization of building-block inputs with a two-level, ANDOR realization), no fully algorithmic method exists for the solution of the more general problem.

The system described in this paper gives solutions to the general problem by use of an online process (using Project MAC at M.I.T.), where the machine accomplishes those computational tasks which can be algorithmically specified, and where the user provides those decisions which he is better qualified to make. The machine portion of the system is based on a set of heuristic procedures which guarantee convergence of the process and give better results than conventional, sub-optimal brute-force techniques. The machine thus behaves in an "intelligent" fashion using successive local-optimization procedures and does not depend on impractical (and usually impossible) exhaustive searches through all possible solutions. When coupled with the flexible human decision process, these procedures give results of practical significance.
CHAPTER I INTRODUCTION page 1
A. DESCRIPTION OF THE PROBLEM 1
B . METHOD OF SOLUTION 2

1. General Concepts 2
2. CADD-1 and CADD-2 5
C. BASIS FOR EVALUATION OF RESULTS 5
CHAPTER II DESCRIPTION OF THE SYNTHESIS METHOD 7
A. OUTLINE 7
B. PRELIMINARY PROCESSING 7
C. DECOMPOSITION 9
D. CONVERGENCE AND SPECIAL CASES 15
CHAPTER III IMPLEMENTATION 23
A. PROGRAMMING CONSIDERATIONS 23
B. GENERAL PROGRAM STRUCTURE 25
3. CADD-1 25
4. CADD-2 28
C. PROGRAM OPERATION 29
5. CADD-1 29
a. Input Phase 29
b. Decomposition Phase 31
c. Support Phase 36
6. CADD-2 37
a. Input Phase 37
b. Decomposition Phase 38
c. Support Phase 39
CHAPlEK IV KESULIS Aivi COIVCLUSIOÑ 41
A. CADD-1 41
7. Limitations 41
8. Comparison with other Methods 43
9. Effect of Human Operator 43
B. CADD-2 44
APPENDIX A DATASTRUCTURES page 47
APPENDIX B DETAILED FLOW CHARTS 53
APPENDIX C SAMPLE RUN FOR CADD-1 71
APPENDIX D SAMPLE RUN FOR CADD-2 77
BIBLIOGRAPHY 83

LIST OF FIGURES

Page
Fig. 1.l Illustration of Recursive Decomposition Process 3
Fig. 2. 1 Outline of Synthesis Method 8
Fig. 2.2 Illustration of Conventions 11
Fig. 2.3 Typical Decomposition Step Using Three-Input NOR Gates 14
Fig. 2.4 Sample Decomposition Using Folding Techniques 20
Fig. 3.1 General Program Structure for CADD-1 24
Fig. 3.2 General Program Structure for CADD-2 28
Fig. Al.l Structures Used in Library Generation 48
Fig. Al. 2 Building Block Directory and Library 49
Fig. Al. 3 Common Structures Used During Decomposition 50
Fig. Al. 4 Typical Tree Element 51
Fig. Al. 5 CADD-2 Data Structures 52
be used in this case. This is an instance where fan-in limitations prevent the use of the standard minimization algorithms. Moreover, synthesis limitations are present when there exist no standard synthesis method that can handle a given set of logic gates. An example of such a case is synthesis restricted to EXCLUSIVE-OR and AND gates, even when these gates have no fan-in restrictions.

B. METHOD OF SOLUTION

1. General Concepts

The method of solution described in this report is basically heuristic; a fully algorithmic and rigorous treatment of this problem does not exist presently and its future development seems unlikely in view of our current knowledge. Fundamental to this heuristic approach is the use of a digital computer on an interactive basis with the human designer. Another aspect of this approach which is a basis for its heuristic structure is a dependence on local, $\dot{r} a t h e r$ than global, optimization algorithms. To illustrate and clarify the often abused term 'heuristic', the following description of system operation is given. A discussion of convergence of the method is given in Chapter II, Section D.

The designer, located at a remote terminal of a digital computer, communicates with it typically via a keyboard, and perhaps through a graphical display. A computer program governs the man-machine interaction, and provides the necessary calculating power. The designer provides the program with the necessary data about the Boolean function to be synthesized and the set of blocks which are to be used in the realization of that function. The man-machine combination then carries out a recursive decomposition which operates first on the given function and then on each subfunction into which the given function is decomposed. Decomposition is thus continued until each non-decomposed subfunction becomes either an input variable or a constant. A simple example of such a decomposition process is shown in Fig. 1. 1 where the allowable gates are two-input ANDs and ORs. Each step of the process corresponds to a subfigure, and the subfigures are numbered in increasing order of complexity of decomposition. Note the multiple use of function BD. This example

INTRODUCTION

A. DESCRIPTION OF THE PROBLEM

The synthesis of a given switching function using logical building blocks (gates) is a task which has traditionally been approached with emphasis on some optimality criterion. At present, there exist methods of synthesis such as two-level AND-OR, NOR-NOR, and NAND-NAND, which guarantee an optimal realization of any switching function. Common features of such methods are:
a) a restriction on the type and method of interconnection of building blocks, and
b) a lack of restriction on the number of inputs to these blocks.

For example, two-level AND-OR synthesis of arbitrary (four-variable) switching functions may require the use of AND gates with two to four inputs and an OR gate with two to eight inputs.

It is a matter of definition that any set of building blocks which is "logically complete" "* can be used exclusively in the synthesis of any given switching function. It is desirable, then, to have a general method which synthesizes any given Boolean function using any given set of logically complete blocks. Such a general synthesis approach is the objective set forth in this report.

Before outlining the foregoing generalized method, it seems appropriate to give a clearer and more specific picture of the limitations which generally confront the user of conventional optimal techniques. In the case of AND-OR synthesis, for example, a perfectly valid, logically complete set might be a two-input AND gate and a two-input OR gate. Since the well-known optimal technique requires either or both blocks to have more than two inputs, it cannot

[^0]

is given to illustrate principles of operation and does not represent a CADD-generated solution.

As a general rule, the system of programs which implement the method and control the interaction do not allow the operator to make a decision which is inconsistent with the current state of the decomposition, both by checking each decision and by limiting his choices. The final result of the synthesis is a block diagram which contains only building blocks belonging to the originally specified complete set, arranged in some arbitrary tree structure and realizing the given function.

A completely mechanized heuristic approach to a problem of this magnitude would involve a large amount of programming to account for all possible circumstances, and would be, moreover, inflexible to change. By using an interactive system, however, all or part of the decision mechanism can be delegated to the human designer. Thus, programming time and the amount of computer memory occupied by the programs are reduced. Furthermore, the interactive system is flexible and permits an easier development of heuristics to meet the many unexpected situations which inevitably arise.

Because of the foregoing, the system started out in a highly experimental form, with most of the decision-making burden assigned to the human. Gradually, however, modifications were introduced to balance the apportionment of decision-making and computing. The modifications were derived from the observation of common situations and patterns which were amenable to algorithmic solution.

Global optimization usually involves an unmanageable growth of data space, and severely limits the size of the problem which can be attacked. Local optimization, on the other hand, although it generally gives results which are not globally optimal, has the advantage of a reasonably bounded data space and is capable of handling larger problems with an attendant increase in computer time only.

This report concerns two basic programs referred to as CADD-1 and CADD-2 which are the original and modified versions of the method under discussion.
2. CADD-1 and CADD-2

CADD-l refers to the system completed in June, 1965. This system is free of program errors and is capable of attacking the type of problem described in the foregoing. It is subject, however, to several deficiencies which can be separated into three areas.

The first of these deficiencies concerns the inclusion of the function library ${ }^{*}$ (q.v.) and its attendant need for folding, rotating, etc. In retrospect, it was found that the function library contributed little to the synthesis process and used a large amount of program space.

The other two deficiencies are on the implementation level and concern the speed and amount of man-machine interaction. CADD-1 uses a typewriter for all interaction, and hence a large amount of real (human) time is consumed in the typing of decomposition tables and block diagrams for the information of the designer. Also, since CADD-1 is a highly experimental system, a large amount of interaction replaces unknown algorithmic tasks. Experience with CADD-1 eventually made much of this interaction unnecessary.

The foregoing deficiencies make CADD-1 a rather slow system in terms of real time (six hours of interaction may be required for a difficult six-variable function), even though computer time usage is small (about two minutes for the same six-variable function).

To overcome these shortcomings of CADD-1, a new system, CADD-2, was created. Major modifications consisted of removing the function iibrary and its assucidied māhiñiy, usiñ a $\tilde{5}$ raphical display rather than a typewriter to speed up the rate of interaction, and eliminating certain areas of interaction. The graphical display used in CADD-2 is the Electronic Systems Laboratory Display Console, and the digital computer used for both CADD-1 and CADD-2 is the Project MAC time sharing system using a modified IBM 7094 processor.

C. BASIS FOR EVALUATION OF RESULTS

Because the generalized synthesis procedure deals generally with problems to which there are no other known methods of solution

[^1]except for so-called "brute-force" methods (to be discussed), it becomes difficult to judge the "goodness" of a particular circuit realization developed by CADD-1 or CADD-2. In a sense, it is "good" that even a single solution has been achieved. Furthermore, how is one to judge the "goodness" of a certain block-diagram configuration, which was purposely generated in that form by the user for reasons of his own? Such a configuration may be better than another configuration which perhaps contains fewer blocks but fails to satisfy criteria of greater importance to the user.

Since there exist conflicting or unknown measures of "goodness!" the only comparison used here is based on the relative number of building blocks used by the generalized versus the (a priori known) "brute-force" techniques.

The "brute-force" technique discussed in the foregoing consists of the following steps

1. Since the given set of building blocks is logically complete, use it to generate \{AND, OR\}, \{NOR\} or \{NAND\}. That is, construct each member of this new set from members of the given set and from the constants 1 and 0 .
2. Carry out the classical two-level minimal AND-OR, OR-AND, NOR-NOR, or NAND-NAND synthesis. ${ }^{* 1}$
3. Substitute members of the classical realization by members of the given set in accordance with step 1, above. Observe that step 1 may be invoked several times, such as, for example, when a particular type of block required by the classical realization contains a different number of inputs than a block already generated. Such a case would be the building of a four-input AND gate from two-input AND gates.
4. Retain the realization generated from step 3 above which uses the least number of building blocks belonging to given sets. This realization will be then compared to realizations obtained using generalized CADD techniques.

It may be true that this comparison is somewhat arbitrary and unfair. Nevertheless, it is the only known method that can be consistently used, since it is independent of the type of logic blocks to be used and of the function to be synthesized.

[^2]
CHAPTER II

DESCRIPTION OF THE SYNTHESIS METHOD

A. OUTLINE

A flow diagram which outlines the generalized synthesis method is given in Fig. 2.1. Operation can be considered in three phases: Phase I, where the program accepts as input the function to be synthesized and the building blocks to be used, and, in the case of CADD-1, generates from each building block a "library" of functions to be used in Phase III; Phase II, where the program provides the mechanism for associating one of the given building blocks with the current function to be realized; * and Phase II, where the mechanism is provided for properly decomposing the current function, under the restriction of the given building blocks, into subfunctions. These subfunctions are either constants, variables, negated variables, building-block functions of variables from the library generated in Phase I (CADD-l only), functions already realized, the fan-out of which has not yet been exceeded (CADD-2 only), or functions which in turn have to be decomposed later.

Phase I is described more fully in Section B of this chapter, Phases II and III in Section C, and particular aspects of Phase III in Section D.

B. PRELIMINARY PROCESSING

Finior to beginning the astugl synthesis, a certain amount of processing of the given set of building blocks must take place. This preprocessing consists of the creation of subelements in the building block directory and, in the case of CADD-1, the generation of a library of functions, for each building block, to be used in a manner described in Section C. For each given block, the preprocessing operation is as follows:

[^3]

1. Create a new subelement in the block directory which contains all the pertinent information about the block, such as its truth table, the number of inputs, its name, and a usable specification of its function. This function specification takes the form of two lists which indicate for what combinations of input values the block generates ZEROS and ONES, respectively. To generate these lists, first roughly list all possible input combinations which yield, say, a ZERO, and then refine this list in a manner similar to the Quine-McCluskey ${ }^{2}$ procedure. Thus, any element of the list which is independent of a particular input, carries a DON'T CARE entry under that input.
2. Detect all the sets of inputs about which the function is symmetric, since the function is invariant under permutations of these inputs. This is done by choosing the smaller of the two (zero or one) function specification lists and considering all possible interchanges of inputs within the lists in order to see if, indeed, the function remains invariant under that particular interchange of inputs. Clearly, inputs which are symmetric to the same input are symmetric to each other.
3.*

Generate all unique permutations of the inputs by using the detected symmetries to eliminate hidden duplicates.
4.* Initialize a library list and append to it items consisting of a truth-table specification of a block function and an indication of the permutations and negations of the input variables which generate this function. For each permutation, and for each possible combination of negations, an item is added to the list if its truth table does not duplicate that of an item already in the list. When the creation of the library list is finished, it contains all possible functions which can be generated by permuting and negating the inputs to the given block.

C. DECOMPOSITION

Classical synthesis methods generally build up the circuit realization by successive combinations of simple functions starting from the input variables until the desired output function is produced. The synthesis method presented here does the opposite, i.e., it works from the output function back toward the input variables, decomposing each function into several "simpler" functions which may, in turn, have immediate realizations or may need to be further decomposed.

[^4]Before proceeding with a detailed description of the process, two conventions used for representing an n-variable Boolean function $F\left(x_{1}: \ldots x_{n}\right)$ will be explained. The first convention consists of entering in a 2^{n}-element array the values of F in an ordering which corresponds to the binary natural code formed by $x_{1}, \ldots x_{n}$. Thus, for example, the value $\mathrm{F}(\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\mathrm{l}$ at $\mathrm{W}=0, \mathrm{X}=1, \mathrm{Y}=0, \mathrm{Z}=1$ is entered in the sixth element of the array since 0101 is the sixth binary number counting zero. The remaining values of $F(W, X, Y, Z)$ are similarly entered as shown in the example of Fig. 2.2a. The second convention involves two sets of n-element arrays, corresponding to the minimum sum of products and to the minimum product of sums. Each of these products (sums) is placed in an n-element array by entering ONES (ZEROS) for those literc ls of the product (sum) which are present and entering DON'T CARES for the remaining literals. For example, a three-input $O R$ is represented in this convention as shown in Fig. 2. 2 b .

Returning to the description of decomposition, let us assume that we are given a function (using the first convention described above) which is to be realized. It is desired that this function be realized at the output of one of the given building blocks. First, a block is chosen, in a manner to be described. The problem is, then, to find a set of subfunctions associated one-to-one with the inputs of the block, and satisfying the following condition. for each combination of the pertinent input variables, these subfunctions give a set of values which when applied to the block produce the correct output value. Each subfunction is dependent on the same variables as the original function or some subset of those variables. For example, suppose the function to be realized has a ZERO value for the fourth element and the block realizing this function is a two-input $O R$. Then subfunctions F and G, corresponding to inputs 1 and 2 respectively, must both have a ZERO value for their fourth element, since an OR generates a ZERO only if both inputs are ZERO. The method for solving this problem and assigning subfunctions to inputs is, for the most part, also described below, although certain aspects of the process, such as convergence and the encounter of "dead ends", are discussed in later sections.

Fig. 2.2 Illustration of Conventions

In selecting a block to realize a given function, the number of ONES and ZEROS of the function are first obtained, and the DON'T CAREs ignored. Then an operator is applied to each block to determine which is the "best" block to use under the circumstances. The operator contains four sections, each of which is given a weight (variable throughout the course of the process) commensurate with the relative importance of that section. The sections are concerned with:
(a) The number of constants (ZEROs and ONEs) appearing in the Building block function specification.
(b) The number of DON'T CAREs appearing in the same specification.
(c) The number of possible ways to generate each of the desired output values.
(d) The number of block inputs.

The operator uses the information about the number of ONEs or ZEROs of the function to weigh the significance of the ONE generators or ZERO generators of the building block function specification, respectively. Operations performed by Sections (a) and (b) are normalized in order to achieve independence from : ections (c) and (d) above. The reason for making the weight adjustable is because the meaning of "best block" changes from one point in the process to another. For example, given two blocks which are identical in "goodness" except that one has more inputs than the other, the one with more inputs is "better" at the beginning of the decomposition because it tends to simplify the problem more rapidly; whereas, toward the end of the decomposition, the one with fewer inputs may be 'better".

Once a block has been chosen, it is added to the existing structure of the block diagram and a decomposition table for that block is created. The table is a rectangular array which has a column for each input to the block, a column for the function to be decomposed, and a row for each element of the function array. The total number of rows is 2^{n}, where n is the number of arguments of the function. It may be possible to fill in certain entries in the decomposition table immediately. For example, if the function has a DON'T CARE in a certain row, then
all other entries of this row will be DON'T CAREs Moreover, if the type of block chosen is such that it can generate, say, ZEROs, in only one or a few ways so that certain inputs must have certain values and no others, then every row in which the function has a ZERO must be filled in according to these input restrictions. Figure 2. 3a shows how initial restrictions are filledin. Note, in particular, how all rows for which F_{0} is ONE contains ZEROs under all subfunctions: since a NOR can generate a ONE only if all inputs are ZERO

The next step in the process is to try to choose an immediate realization ${ }^{*}$ for one of the subfunctions, usually the one corresponding to the first input, F_{1}. In the example of Fig, 2. 3a a search of available immediate realizations is made, rejecting all those which are incompatible with having a ZERO as their fourth and seventh element Those reaiizations which are compatible are said to "fit": for instance, the variable X does not fit because it had a ONE in its seventh element, whereas the variable \bar{Y} fits, since it contains ZEROs in its fourth and seventh elements. From all those realizations which fit, the "best" one is chosen and used to fill in the particular column (subfunction) under consideration. The "best" subfunction depends upon the type of block being used. In the case of a NOR gate the subfunction which row by row yields the highest ... correlation ${ }^{*}$ with the function is "best", since it generates the greatest number of DON'T CAREs in succeeding subfunctions, i.e., if the output of a NOR is ZERO, then \mathfrak{Z} ONF, on any of its inputs allows the other inputs to be arbitrarily assigned. In the case of an AND gate, correlation rather than anticorrelation is the "goodness" criterion, for the same reason, i.e., the maximum generation of DON'T CAREs. Once a goodness criterion has been chosen for a given type of building block the same criterion can be used throughout the synthesis.

In Fig. 2. 3b, F_{1} has been filled in with the variable \bar{Y} (recall that both variables and their negations are available), since it was found to be the "best" subfunction. Variable $\overline{\mathrm{Y}}$ is attached to the first

[^5]
(a)

X	Y	Z	F_{0}	F_{1}	F_{2}	F_{3}
0	0	0	0	1	ϕ	ϕ
0	0	1	0	1	ϕ	ϕ
0	1	0	0	0	1	ϕ
0	1	1	1	0	0	0
1	0	0	0	1	ϕ	ϕ
1	0	1	ϕ	ϕ	ϕ	ϕ
1	1	0	1	0	0	0
1	1	1	0	0	0	

(c)
$\begin{array}{lllllll}X & Y & Z & F_{0} & F_{1} & F_{2} & F_{3} \\ 0 & 0 & 0 & 0 & 1 & \phi & \phi \\ 0 & 0 & 1 & 0 & 1 & \phi & \phi \\ 0 & 1 & 0 & 0 & 0 & & \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & \phi & \phi \\ 1 & 0 & 1 & \phi & \phi & \phi & \phi \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & & \end{array}$

(b)

(d)
NOTE:
$\phi=$ DON'T CARE

Fig. 2.3 Typical Decomposition Step Using Three-Input NOR Gates
input of the NOR in the block diagram, and further entries in the table may now be filled in. In the present example, Fig. 2. 3b shows how DON'T CAREs are generated in the remainder of the first, second, and fifth rows due to the ONEs of the first subfunction.

The above procedures are repeated for each of the remaining inputs to the block and each time a subfunction is chosen and filled in, it further restricts the behavior of the remaining inputs. A point may be reached sooner or later when no immediate realization "fits". In this case, remaining blank entries are filled in a manner left to the discretion of the operator, but subject to some of the points to be mentioned in Section D. The resulting subfunction is then treated as a new function to be decomposed. Upon successfully completing this further decomposition, the process moves on to the next input until all inputs have been filled, at which point the original function has been successfully decomposed and attention is then returned to the preceding level of decomposition. In the example of Fig. 2.3, all inputs have immediate realizations: the NOR of X, \bar{Y}, and Z for the second input (Fig. 2.3c) and the NOR of $\overline{\mathrm{X}}, \overline{\mathrm{Y}}$, and $\overline{\mathrm{Z}}$ for the third input (Fig. 2.3d), so that no fur ther work is necessary and the given function has been decomposed.

To summarize, the decomposition process is accomplished as follows:

1. Take the given function to be synthesized and apply to it the block selection and decomposition techniques illustrated above.
2. Apply these techniques to all generated subfunctions which cannot be immediately realized and iterate until a final realization of the original function is reached.

The path followed by the process in performing Steps 1 and 2 above will form a tree-like structure which is one-to-one with the block diagram representing the current state of the synthesis The process terminates when all the inputs of the first block in the tree (block diagram) have been filled and realized.

D. CONVERGENCE AND SPECIAL CASES

\therefore ofar we have not discussed convergence, i.e., the termination of the entire process in a successful realization. The question of
whether convergence can be achieved or not will be called the convergence problem. The convergence problem arises whenever a given subfunction is not immediately realizable, but must be further decomposed. In the following subfunction G is said to be a convergen: subfunction of function F if either
A. min $(\operatorname{ONEs}(F), \operatorname{ZEROs}(F))>\min \left(\operatorname{ONEs}^{(G), \operatorname{ZEROs}(G))}\right.$ or
B. DON'T CAREs $(G)>$ DON'T CAREs (F)

If for every generated subfunction one of these convergence criteria is obeyed, then repeated decomposition will yield final functions which are either an input variable, a constant, or a DON'T CARE.

For any arbitrary set of logic gates, it is not certain that this convergence criterion will be satisfied. On the other hand, it is possible to show that convergence can always be satisfied for certain given sets of building blocks. For example, proof of convergence when the given set consists of n-input NOR gates follows:

PROOF: Let the function to be realized have $\mathrm{N}_{\text {, ZEROs, }} \mathrm{N}_{1}$ ONEs, and N_{2} DON'T CAREs. Then each subfunction which is not immediately realizable contains exactly $N_{0}{ }^{\prime}=N_{1}$ ZEROs (due to the ONEs of the function), $N_{1}{ }^{\prime}<N_{0}$ ONEs and $N_{2}{ }^{\prime}>N_{2}$ DON'T CAREs, which assures convergence since $\min \left(N_{0}, N_{1}\right) \geq \min \left(N_{0}{ }^{\prime}, N_{1}{ }^{\prime}\right)$ and $\mathrm{N}_{2}{ }^{\prime}>\mathrm{N}_{2}$. The reason that $\mathrm{N}_{1}{ }^{\prime}$ is less than N_{0} (and therefore by mutual exclusion $N_{2}^{\prime}>N_{2}$) is as follows:
a. Assume that in the worst case, no immediately realizable function fits any of the n inputs. Then assign a single ONE in each row where the function is ZERO, distributing these ONEs as evenly as possible among the inputs.* It follows that

$$
N_{1}^{\prime} \leq\left[N_{0} / n\right]+1 \text { and } N_{2}^{\prime}=N_{2}+N_{1}-N_{1}^{\prime}
$$

thereby confirming the assertion.
b. Assume one or more immediately realizable subfunctions fit some of the inputs. Since these subfunctions must contain at least one ONE (otherwise they would be trivial and serve no purpose in the decomposition), and since this ONE
${ }^{*}$ This results in at most $[\ldots]+1$ ONEs per input, where [X] means the integer part of X.
must occupy a row which corresponds to a ZERO in the function, all other unfilled inputs are assigned DON'T CAREs in that row and hence $N_{2}^{\prime} \geq N_{2}+1$ and $N_{1}^{\prime} \leq$ $N_{1 ;}-1$ for the remaining subfunctions, thus confirming the assertion.

Dually, use of the set of n-input NAND gates renders the method convergent. Likewise, convergence has been shown when the given set consists of minority gates. In addition to the above set of gates, it is expected that convergence can be shown for a number of logically complete sets. No special effort was spent in attempting to show convergence for other sets of gates, since primary attention was directed on the development of the method.

In explaining the generalized synthesis method of Section C, certain special situations were not discussed in order that the basic ideas be made as clear as possible. These special situations can be grouped into cases requiring "folding", permutation of variables, and "backing up', the first two being present in CADD-1, and last being present in both. The remaining discussion in this section, with the exception of the "backing up" issue, applied mainly to CADD-1.

In the example of Fig. 2.3 the function to be realized depends on three variables. Furthermore, the only building block in the function library has three inputs. Hence, both function vectors (linear arrays) dre of equal length. The natural question arises as to what policy should be taken if the length of the function vector of the function to be realized were unequal to that of any or all of the immediately realizable functions arising from the building blocks in the funciivii litrary. The answer to this question depends on the relevant circumstances outlined below:

1. The number of variables, on which the subfunction to be realized depends, is less than the number of inputs of any of the blocks in the library. Consequently, the function vector of each block is longer than the vector of the function to be realized. Therefore, of all available immediately realizable subfunctions, only variables and constants can be used.
2. The number of variables, n, on which the function to be realized depends, is greater than or equal to the number of inputs m of some or all of the building blocks. Those blocks for which $m=n$ are treated as before, that is they are tested for 'fitting" and "goodness" along with the variables, and constants. Blocks
for which $m<n$ can bet used, provided that their function vectors are "unfolded" to accommodate the greater length of the subfunction vector or, conversely, the subfunction is "folded"* to accommodate the lesser length of the building block function vector. Those blocks for which $m>n$ are not used at this decomposition stage.

A subfunction vector can be "folded" about its highest-order variable if the first half of the vector is consistent with the second half in the following sense:

1. Let $2 p$ be the length of subfunction F, and p the length of folded subfunction F^{\prime}.
2. For $\mathrm{i}=0$ to $\mathrm{i}=\mathrm{p}-\mathrm{l}$:
a) If the ith element of F, F_{i}, is a DON'T CARE or an unfilled entry, $F_{i}^{\prime}=F_{p+i}$
b) If $F_{i}=0$ and $F_{p+i}=1$, then folding is impossible, and the procedure stops, otherwise element $F_{i}^{\prime}=0$
c) If element $F_{i}=1$ and $F_{p+i}=0$ folding is impossible and the procedure stops. Otherwise element $F_{i}^{\prime}=1$.

Conversely, "unfolding" a subfunction consists of doubling the length of its function vector by repeating it.

When decomposing a function of n variables, and attempting to check the fit and "goodness" of an immediately realizable subfunction derived from a block having $m<n$ inputs, the subfunction is repeatedly "unfolded" $n-m$ times and is then treated as any other immediately realizable subfunction. The effect of the unfolding process is to make the subfunction independent of the highest-order $n-m$ variables. Clearly the other subfunctions assume the burden of this dependence. Moreover, the extent to which a given, partially specified subfunction can be folded places a lower bound on the number of inputs a usable block may have. That is, if the maximum folded leng th of the function vector of a subfunction is greater than that of a block, then that block, when unfolded, will not fit, since otherwise that subfunction could have been further folded.

* The process of folding and unfolding is discussed in the next paragraph.

Since folding, in general, implied independence from one or more variables, all non-immediately realizable subfunctions, before being in turn decomposed, are folded as far as their completely specified entries permit. This technique, which also applied to CADD-2, allows the subfunction to be dependent on as few variables as possible and therefore makes the function easier to decompose. Many times these non-immediately realizable subfunctions can be folded by a judicious assignment of blank entries in the decomposition table. Since folding a subfunction satisfies convergence (a function can only be folded a finite number of times), a good heuristic technique consists of using up as many restrictions* as possible, under one subfunction, provided they do not interfere with the folding of that subfunction. The reason for this approach is that other subfunctions may then receive the benefits of DON'T CAREs in the rows where restrictions have been satisfied. The next most desirable alternative to finding an immediate realization for a subfunction is the ability to fold it, particularly if some restrictions can be absorbed at the same time. Several examples of folding appear in Fig. 2.4 with Fig. 2.4a pertaining to CADD-1 only and with Figs. 2.4b and 2.4c pertaining to both CADD-1 and CADD-2.

Folding was explained in terms of the highest-order variable since it is easier to see physically than folding about some other variable. Clearly, it can be extended to folding about any variable through an available mechanism. The number of permutations that are tried at each level of the decomposition is arbitrary, and will affect the local optimality of the solution, rather than the actual finding of a solution It should be noted that for a given n-variable function and an m-input block at most ($\mathrm{n}-\mathrm{m}$)! permutations of the variables (starting with the highest-order one) need be tried since the least significant m-variables, corresponding to the m-inputs of the block, have already been exhaustively permuted in the function library. Examples of this permuting process are shown in Fig. 2.4.

[^6]It $\theta 00-\theta 0 \theta 0 \theta \theta 0 \theta 0 \theta-\theta$ $\tilde{L} \theta 000 \theta 0-0 \theta-0-0-0 \theta$ 픈ㅇ00－000日000000日 चо－ 00 －0－ 0 －0－0－0 $>0-0-0-0-0-0-0-0-$
 $\times 00-100-100-100-1$ 30000 －－－ 0000 －－－ N00000000－1－－－－－ t $\theta \theta \theta 000 \theta+0 \theta 00 \theta$巛日且日000－－0－0000－
 च 000 －－00－0－00－0 0
$30-0-0-0-0-0-0-0-$
NOOR-OOR-OOR-OO-N >0000－－－ 0000 －-1 $\times 00000000$－

	$\theta \theta 000 \quad \theta 000$

ハーか○○○

ัー $-000000-000000 \theta$

Finally, a feature is provided for "backing-up", i.e., undoing a certain arnount of previous work. When first writing the program to implement the method, the ability to "back-up" was considered necessary because it could not be a priori shown that the synthesis would always converge. Although convergence is guaranteed for NOR, NAND, and minority gates, thus making use of the backing-up feature unnecessary, the feature can be nevertheless used in striving to improve the optimality of the resulting configuration. Thus, from any given decomposition stage, the backing-up feature can be used to modify an earlier decomposition stage so as to obtain better results.

CHAPTER III

IMPLE ME NTATION

A. PROGRAMMING CONSIDERATIONS

The reason for implementing the method described in Chapter II was to test the validity of the method, rather than the relative efficiency with which it could be carried out. Time limitations imposed restrictions on the amount of programming effort. Consequently, it was decided to use the AED- 0^{3} programming language for the bulk of the program, with selected short subroutines written in FAP ${ }^{4}$ (IBM 7094 Assembly Language). AED-0 is an ALGOL-like symbolic programming language which has additional facilities (in the form of systems of special subroutines) for computer-aided design, such as easilyprogrammable free-format input-output and dynamic storage allocation. AED-0 programs can be written with the same ease as FORTRAN or MAD (other symbolic compiler languages), and AED-0 was chosen instead of the latter two because of its superior facilities. No claim is made as to the efficiency of the AED programs, nowever, since the prime consideration was to achieve a working program. Certain purely logical (bit-manipulating) tasks were written as subroutines in FAP, a far more natural language to use in those cases.

Time limitations, together with initial uncertainties about the extent of interaction necessary for the method to be properly implemented, dictated that considerable emphasis be placed on the interaction aspect of the systerm. From the standpoint of trying to write a program as rapidly as possidie, a $\begin{aligned} & \text { U } \\ & \text { cision that would be very involved }\end{aligned}$ to program would be better left to the discretion of the operator, especially if it were based on intuitive, rather than computable factors. From the standpoint of a priori uncertainties in implementing the method, it was deemed expedient to give control to the operator whenever a sound algorithm could not be devised for the computer.

It should be borne in mind, therefore, that the programs described in the remainder of this chapter do not represent highly efficient programming or interaction systems, but are a rather expedient implementation aimed at testing the validity of the synthesis method. Because

Fig. 3.1 General Program Structure for CADD-1

of this reason, no attempt is made to explain the fine details of each program. Instead, a more general description of all the programs and their interconnections is given here. Important data structures used and referred to in the remainder of this chapter are illustrated in Appendix I, and detailed flowcharts of each important prograrn in CADD-1 are given in Appendix II. Flowcharts for the programs in CADD-2 are not given, due to time limitations and their resemblance to CADD-1 flowcharts.*

B. GENERAL PROGRAM STRUCTURE

1. CADD-1

The general program structure and hierarchy is given in Fig. 3.1. It should be noted that only the AED programs are included in the treelike structure. This structure indicates the origin of calls on each subroutine, MASTER being the main prograrn. The FAP package is the group of subroutines written in FAP for bit-manipulating purposes and each subroutine is called from within one or more of the AED programs. The OUTPUT package is a set of routines, provided as part of the AED programming system, for free-format output. The chief advantage of the OUTPUT package over the standard FORTRAN format statement is that printed output can be specified character by character, rather than a line at a time, considerably simplifying the programming of the machine-to-man interaction.

The RWORD package is nalogous to the OUTPUT package, excepi indi it is fuir ficc-format input, allowing the operator to type commands and data in a form most convenient to him. In using the RWORD package, initially SE THOW is called to establish the source of the input data (keyboard, tape, disc file, etc.) and subsequently whenever it is de sirable to clear out the input buffer. Each call on RWORD gets a new "itern" from the input buffer, stores the "item" in $B C D$ form in a temporary location, and returns a pointer to this

[^7]location. An "itern" is defined by parsing the left end of the input buffer according to the character table RT. This table indicates the type of each BCD character and further indicates with which other characters it can be grouped to form an itern. An itern is a sequence of characters which fit together, with delimiters on either side. Since one or more consecutive blanks or a carriage return are considered single delimiters, a satisfactory manner of inputing all iterns is to type them one after the other, separated by blanks, and on consecutive lines if necessary. All items will be in BCD form, which is suitable for interpretation of commands and of BCD data. If nurnerical data is expected, the BCD form is converted to an integer number by use of the subroutine DECODE.

The programs MASTER, INP, INF, MFP, SFP, and DEL, within which all the interaction takes place, are each equipped with a separate command structure. This structure enables the program to ask for and interpret a command from the operator and then branch to the appropriate executive subsection. Within the subsection there may be further requests for commands and/or data, and when the necessary processing is completed, control is returned to the main section which requests another cornmand.

Dynamic storage allocation is handled by means of three subroutines, FREZ, FREC, and FRET, supplied also as part of the AED system. FREZ sets aside a block of consecutive computer words from free storage and returns a pointer to them so that they can be used to hold newly generated data. FREC is similar except that the block set aside from free storage is made identical to an already existing block. FRET returns blocks which are no longer needed to available free storage. A "pointer" is a variable whose value is some absolute location in core mernory which is the address of the first word of a block.

All reference to blocks of free storage, for both storage and retrieval purposes, is made through pointers to the blocks. This referencing is further aided by the AED "bead structure" facility, which allows a component of a free-storage block, specified by the position of the word within the block and the position of the component within the word, to be declared and used on any pointer.

All data which is referenced from more than one program is assigned a location in COMMON storage, in order to eliminate the need for transmitting it as arguments in subroutine calls. The program variables so used are as follows:

1. STATUS - indicates the present status of the synthe sis with respect to specification of function to be realized and blocks to be used. STATUS takes on four values: 0 - beginning; l - function specified, but no blocks specified; 2 - function and some blocks specified; 3 - decomposition begun.
2. INV ARS - number of input variables.
3. INPTVARBS - pointer to block of storage containing variable names.
4. MFN - pushdown stack containing pointer to current function specification.
5. CBLK - pushdown stack containing pointer to building block (in tree) under consideration.
6. BBLK - pointer to building block directory.
7. LIBR - pointer to building block library.
8. NIL - pointer which indicates termination, either bottoms of stacks or ends of string-pointer lists.
9. PSTATE - indicates the present state of the decomposition:: 0 - decomposition has not begun; 1X - select block to realize function on input X; 2 X - select subfunction on input X; 30 - decomposition done.
10. TRUNK - pointer to head of block diagram (block that realizes output function).

Execution of the program begins with MASTER requesting a command. MASTER will accept seven commands, six of which cause it to call subroutines INP, INF, MFP, SFP, DEL, and TER, and one which prints out the se commands in case the operator has forgotten them.* INP is the input subroutine, MFP and SFP are the subroutines which carry on the decomposition, INF and DEL serve to support the synthesis effort, TER ends the execution of the program. MASTER

[^8]serves as a junction point for the transfer of control from one of the above mentioned subroutines to another during the course of synthesis.
2. CADD-2

The general program structure for CADD-2, similar to that of CADD-1, is given in Fig. 3.2. CADD-2 makes use of a large number

Fig. 3.2 General Program Structure for CADD-2
of utility subroutines not mentioned in the figure which are supplied along with all the other AED-0 programming packages. The discussion of the CADD-1 structure applies to CADD-2 as well, with the following exceptions.

The RWORD package was reduced in size (and flexibility) in order to accommodate the needs of CADD- 2 without excessive program
length. The latter version of RWORD reads "items" one at a time from the input buffer. An "item" is any grouping of non-blank characters delineated by blanks; thus the character table is made trivial and the processing considerably simpler.

In cormmon storage, the older INVARS and INPTVARBS are incorporated into new INVARS, LIBR is deleted, and FNS, which is a string list of all previously realized functions, is added. PAGE and FITLIST are also added to common, the former to indicate the current page of the decomposition table displayed on the cathode ray tube, and the latter to point to the top of a list of "fits" for the current subfunction.

The "KLUDGE" package mentioned in Fig. 3.2 is the set of routines which enables the programming of a visual display. The display is used as a "fast typewriter" in order to reduce interaction time. The two AED programs that generate displays are DTABLE and DIAGRM, displaying respectively the up-to-date decomposition table and the circuit block diagram.

C. PROGRAM OPERATION

1. CADD-1
a. Input Phase The first subroutine to which MASTER transfers is normally INP. INP permits the input and editing of both the function to be synthe sized and the set of building blocks to be used in the synthesis. The function must be specified before the blocks, and may be cditad at any time thereafter until the actual decomposition process begins. Blocks are specified one at a time and may be edited at any time provided they haven't been used in the decomposition.

The function is specified by giving the number and names of the variables and the values of all the terms (rows) in the function truth table. The latter can be specified in two ways, depending upon the nature of the function. One way is to first set all rows to the same value, and then indicate which rows have different values. Rows are coded in natural binary sequence. Thus, for example, $F(W, X, Y, Z)=$ $W Y X+X Y Z$ is specified by first setting all rows to ZERO and then setting rows 7,14 and 15 to ONE. The other way is to indicate, row by row, the values of the function. This information is first
stored in the unpacked form (UNPACKED FN) shown in Fig. Al. 3 of Appendix I, and when completed, it is converted to the packed form shown in the same figure. Packing and unpacking of functions is carried out by the use of the FCVRT and FUNPK subroutines, respectively. Finally, all the information concerning the function is put into the form of a FUNCT (also shown in Fig. Al.3) structure, and the pointer is stacked onto MFN to initialize the state of the decomposition. A FUNCT block is of length $n+2$, where n is the number of variables on which the function depends. The first word of the block contains n, the second word contains a pointer to the packed function description, and the remaining n words contain numbers which indicate what the variables are and in what order of significance they appear, (the further down in the block, the higher the order). To find the variable occupying a certain position, the number in that position is added to the pointer INPTVARBS and the new pointer becomes the location of the BCD variable name. FUNCT structure is used through the decomposition process for storing all information concerning a particular function (or subfunction).

A block is specified by first giving its name and number of inputs, and then its truth table, in a manner similar to that for function above. The data structure for the block directory and the associated block library is shown in Fig. Al. 2 (Appendix I). Every time a new block is specified, the following occurs:

1. Increase BLOCKNUM (total number of blocks) by 1.
2. Change MIP or MAP (minimum or maximum number of inputs of any block) if new block affects thern.
3. Create a new entry at the beginning of both the block directory and the library. PDKFN points to the packed function representing the truth table for the block.
4. Create a generator list in the form given by FSPEC in Fig. Al. 3 and insert the pointer in the FSPEC component of the block entry.
5. Find all symmetries of inputs, putting this information in the form of the list SYMLIST (Phase 1) given in Fig. Al. 1 (of Appendix I). This form is used since it facilitates the incorporation of subsequent symmetries without affecting the already existing structure.
6. Convert the SYMLIST into the form (Phase 2) of the same figure.
7. Using the new SYMLIST, generate all possible nonredundant permutations of inputs and classify them in the form of the tree-list to which PERMUTATIONS of Fig. Al. l points.
8. Create the list COMBLIST which uses PERMUTATIONS to generate all permutations and their associated packed functions.
9. For each permutation, generate the functions associated with all possible combinations of negations of the inputs, and add them to the list of functions under the library entry for the block if they are new functions. Thus, the library is subdivided according to blocks, and each block points to a list representing all possible functions realizable with that block. Furthermore, each element of the list contains an input code (indicating permutations and negations) and a pointer to a packed function.

The above steps make use of the following additional subroutines:
FUNSP - creates the generator list.
CRLIB - creates the block library.
PERGEN - generates PERMUTATIONS in CRLIB.
COMGEN - generates COMBLIST in CRLIB:
COMPAR - compares and merges terms for use in FUNSP.
PERMUT - permutes values of inputs within a generator term for use in generating SYMLIST in CRLIB.
CONVRT - converts terms from one - to two-bit mode for use by FUNSP.
INP - can be re-entered at any time during the decomposition for the purpose of specifying new blocks or editing oid unes which have not yet been used; further decomposition will then be based on the new block directory and library.
b. Decomposition Phase After the function to be realized and the set of blocks to be used have been specified within INP, control is returned to MASTER. The main course of the decomposition and synthesis then involves alternate calls on the subroutines MFP and SFP, with occasional calls on the support routines discussed in Section C.

MFP is called whenever the state of the decomposition process requires that a choice of block be made to realize the current function specification. SFP is called to handle all matters pertaining to the decomposition of a function using a block selected by MFP. SFP and MFP operate in such a way (using the common variable PSTATE) that only the proper one can be entered at any given time. At the beginning of the decomposition process, MFPis called to decide on a block to realize the given (original) function. Then, SFP is called to decompose that function into subfunctions, one or more of which may require a new call on MFP and consequently on SFP. This process continues until SFP realizes all subelements of the block diagram tree, without further calls on MFP, at which time the process is backed up to the level of the output block with no more inputs left unspecified.

MFP contains commands which allow the user to find out the present objective (i.e., the input and block associated with the current function), to find out the theoretically be st block to use, and to specify which block to actually use.

The be st block to use is found by applying the subroutine BGOOD to every block in the directory and noting the one which produces the highest value. The program gives BGOOD the number of ONEs and ZEROs of the function, as well as information concerning the generators for each block; the user gives it four weights (DCWT, CONSWT, VARWT, and INPWT) which are used to weigh the average number of DON'TCAREs in the generator lists, the average number of constraints in the generator lists, the elements of that list and the number of inputs of each block, respectively.

When a decision is finally reached concerning the block to be used, a new element is (a) added onto the previous tree structure, (b) connected to the input entry in the previous block (specified by PSTATE), (c) given a unique name generated by the subroutine GENSYM, and (d) filled in with all the proper initial information, such as number of inputs, type of block, and output function. A decomposition table is created and filled in with all initial restrictions and the generator table is initialized to contain all generators. Finally, control is returned to MASTER with PSTATE set to begin decomposing the function on input No. 1.

At this point it seems appropriate to explain in detail the data structure needed to contain the growing tree of the block diagram and intermediate decomposition results. A typical element in this structure is illustrated in Fig. Al. 4 of Appendix I. The main block consists of $n+2$ words, n being the nurnber of inputs of the block. In the first word, SPEC indicates whether or not the entire block has been fully realized through all of its inputs, OUTFN is a pointer to a FUNCT type structure specifying the function realized at the output of the block, INPUTS is the number of inputs to the block, and NAME is a pointer to the $B C D$ name of the element (of the form AND004, OR021, NOR015, etc.). In the second word, TBL is a pointer to the decomposition table and BLKTY is a pointer to the building block directory entry of that type of building block. The third through $n+2$ words correspond to the first through n inputs, and consist of : SPEC, which indicates if the subfunction on that input has been realized; INPFN, which, if the subfunction is realized by another block, is a pointer to a FUNCT type structure specifying the subfunction; INPCODE, which indicates whether the subfunction is another block (4), a negated variable (3), a variable (2), or a constant (1); and NEXTBLK, which is (a) a pointer to a similar element of the structure if the subfunction is realized by a block, (b) a pointer to the $B C D$ name of a variable if the subfunction is a variable or its negation, and (c) 0 or l if the subfunction is constant ZERO or ONE. An element block which has been completely specified is stripped of its decomposition table, leaving only the structural skeleton in finished portions of the block diagrarn. The decomposition table consists of $n+1$ words. In the first word, GEN is a pointer to the generator table, and $F N$ is a pointer to an UPKDFN-type structure containing the function specification for the block. The remaining n words correspond to inputs l through n andeach contain SPEC, which indicates if the input is filled (note: the input may not be realized yet), and COLL, which is a pointer to another UPKDFN-type structure containing the partially specified or complete subfunction. The generator table is divided into two parts to accomodate the case when there are a large number of ZERO- or ONE -generators for a certain type of block, but normally only the first half, to which GEN points, is used.

Each half is of the same length as the UPKDFN structures, thus giving a generator specification for each term of the function. SPEC indicates when only one generator remains for a given term of the function, thus fixing all subfunctions in that row (term). A 1 in the leftmost (33 rd) bit of GENCODE indicates that the function has a DON'T CARE in that term, whereas a 1 in any other bit position (counting from right) of GENCODE means that that particular ZERO or ONE generator is still valid for the function term. Thus, a term containg ZERO (or ONE) initially contains g l's in its rightmost g bit positions, corresponding to the g ZERO (or ONE) generators in the block specification; furthermore, initial restrictions on certain columns (inputs) are determinedfrom these g generators. As the decomposition table is gradually filled in, added restrictions limit the choice of generators (which are erased bit-by-bit from GENCODE), until only one generator is left and the row is completely filled in.

SFP has a large number of commands de signed to handle all aspects of decomposition and to provide some aid to the user in making decisions concerning the decomposition. The se commands accomplish the following tasks: indicate the present objective (which input of what block) of the decomposition; change the objective of the decomposition; find all possible immediate realizations which fit the present partially specified subfunction; find which one (s) has (have) the highest correlation or anticorrelation factor with the main function; decide which of the se to use; fill in an item (row) of the present subfunction; travel on to further decomposition once an input is completely filled; give the state of convergence of the present subfunction; rotate the variables of the function in order to better detect some foldings; and print out the Karnaugh map of any library function.

The information concerning which input (hence, which subfunction) is currently decomposedis contained in PSTATE: Once an input has been completely realized, it cannot be made an object of SFP. Whenever the subfunction being decomposed changes, FITLIST, which is the string-pointer list indicating the immediately realizable functions, variables, and constants that fit into the pre sent subfunction, is erased. Correlation, anticorrelation, and the decision as to which
immediately realizable subfunction must be chosen, work only with a non-empty FITLIST. These details, and a number of others, are ormmitted from the present discussion so as not to confuse the main thoughts.

A typical mode of operation in decomposition, for each new input is as follows:

1. Find all fits. If nothing fits, go to Step 5 below.
2. Correlate or anticorrelate.
3. If not satisfied,* permute variables and go back to Step 1. All permutations of variables can be achieved.
4. If still not satisfied, go to Step 5. Otherwise, specify which immediately realizable function is desired. The input is then filled with the selected subfunction and new restrictions are filledin. The decomposition process may be repeated next for a new input. If no inputs remain to be realized, and if the top of the tree has been reached, then the decomposition is over; otherwise, return to the higher level and look for unrealized inputs. This process is repeated until an unfilled input is found at some higher level or the process terminates.
5. Fill in by hand all remaining blank items of the subfunction using previously mentioned techniques.
6. Fold the subfunction (via the command TRAVEL) wherever possible and change PSTATE so that when control is returned to MASTER, MFP will be called next.

Subroutines used during the above process and their descriptions follows:

IPFIT - performs the task of generaining the FITIIST.
SFDCD - performs the task of choosing an immediately realizable function and carrying out the consequences.
KPR - prints out the Karnaugh map of a function.
GENSYM - generates a new, unique name for blocks in the tree each time it is called.

BGOOD - evaluates the "goodness" of a block to be used to realize a function.

[^9]ANTCR - used by MFP in correlation and anticorrelation. FNFIT - used by IPFIT in finding fits.

Many times it is difficult for the user to be fully aware of all the details of the process, especially after a permutation of variables or in trying to fill in a subfunction by hand. Moreover, the user may wish to "back up" in order to achieve a better realization. Both these cases are considered as parts of the support phase for the decomposition process rather than parts of the decomposition and are handled by INF and DEL, respectively, to be discussed in the next section.
c. Support Phase. The support subroutines INF and DEL supply additional information concerning the various aspects of the decomposition and provide a means of retreating from a situation which is considered unsuitable by the operator. INF can be called at any time from MASTER, whereas DEL can be sucessfully called only when PSTATE indicates the "subfunction" (2X) mode. The reason for the latter restriction is that there will be no need to 'back up" while trying to decide what type of building block should be used in realizing the current function. DEL enables the operator to do one of two things: (a) Erase the entire present element of the tree, and all the structure dependent on it, putting the state of the decomposition back to where a call on MFN to re-realize the present function is appropriate, or (b) retreat yet one step further, and place the process in a subfunction-picking mode with reference to the tree element from which the original element was derived. In the first case, CBLK is unstacked and the entire present element (including its decomposition table), together with the portions of the tree connected to its inputs, are deleted. One input alone cannot be deleted since it normally affects the decomposition of all other inputs. Control is then returned to MASTER with PSTATE indicating that MFP should be called next. In the second case, both CBLK and MFN are unstacked, thus undoing the effect of a previous "travel" command. PSTATE is set to a mode indicating subfunction selection on the particular input of the higherlevel block which was previously connected to the recently deleted element. Control remains in DEL in case further retreat is desired. In both cases, special provision is made for treating the process when it is backed up to the top of the tree.

INF is a completely passive subroutine in the sense that its only purpose is printout of information. INF permits the operator to ask for the following information: Status of decomposition; number of input variables; names of the input variables; Karnaugh map of current main function; number and names of building blocks; members of block library corresponding to a given building block; state of decomposition; condition of present tree element (block); condition of any element in tree; Karnaugh map of any completely specified input function to present element; decomposition table, including generators for present element; and current block diagram (tree). By far, the most frequently requested information concerns the decomposition table, since it changes every time a new item of a subfunction is filled in, or whenever the function is rotated. Normally, there are several repeated transfers of control from SFP to MASTER in the course of decomposition of a single function, since when filling in a subfunction by hand the precise state of the table must be known.

Subroutines used by INF and DEL and their descriptions follow:
NSRCH - searches the entire block diagram tree for an element with a given name. Used by INF to give the condition of any element in tree.

DIAGRM - prints out current block diagram. It is a good illustration of the superiority of the OUTPUT package over FORMAT statements, since several parts of the same line may be printed out by successive recursive levels of DIAGRM, which is a recursive procedure.

REMOV - deietes an eiement añ all ite subelements from the tree, deleting also the decomposition table of the top element.

When the synthesis process has been completed, the circuit realization can be obtained via a call on INF to print out the final block diagram.

2. CADD-2

a. Input Phase. The input phase of CADD-2 operates much in the same way as that of CADD-1, although certain details are different. An alternate method of inputing which saves interaction time is available
for both function and block specification. This method consists of writing a small program in a standard format which specifies completely a function or building block, and compiling this program prior to execution of CADD-2. Then, whenever a specification is called for within CADD-2, the particular program which is desired is loaded into core memory. This method is particularly helpful for blocks and function which are going to be used frequently (such as standard logic gates) since the effort expended in writing the program is small compared to the effort expended in re-specifying the block or function for every execution of CADD- 2 in which it is used.

A new parameter which has been added to the block specification is fan-out. This parameter restricts the number of times a specific subfunction can be used within the block diagram by restricting the fan-out of the block which realizes that subfunction.

The 'function specification' format for CADD-2 differs in various respects from its predecessor (see Fig. Al.5). Besides the fan-out restrictions, all functions are kept in canonical form, i.e., with all the variables in the same order, and with the component VCODE to indicate the variables on which the function depends. Under the arrangernent of the decomposition process of CADD-2, all rotation, folding, etc., is performed dynamically, so that the functions are stored in canonical form only, the refore making easier the testing for fits.

All of the programming which generates the block library in CADD-1 is absent from CADD-2, since no such library is now used. This approach greatly simplifies the concepts, computing time and storage used in decomposition.

All subfunctions that becorne fully realized are placed in an ordered list to which FNS points. When a subfunction is being treated for "fits", elements of the FNS list posessing the same variable dependence are checked, hence, it is now possible to fit an already existing function and to permit a fan-out of more than one for blocks picked from FNS.
b. Decomposition Phase. The main differences between CADD-1 and CADD-2 decomposition lie in the subroutine SFP. MFP is virtually unchanged, except to accomodate the new programming details, and to
speed up the interaction, such as an automatic block selection if there is only one block in the directory. SFP for CADD-2 is a self-contained working unit, with need to transfer to INF only for displaying the current block diagram. This is done by having the current decomposition table constantly displayed on the CRT, with any occuring changes immediately updating it. Most of the CADD-1 SFP cornmands remain in CADD-2, unchanged in intent, but sornewhat changed in content. The subfunction fitting command has improved interaction abilities and no longer checks a function library: but rather checks the FNS list (along with constants and variables). There are many interaction time improvements in the (anti) correlation, subfunction selection, manual table filling, traveling, and convergence information command, as well as changes in programming due to the new data structure. Two new commands were added, (a) to give the degrees of freedorn (lack of dependence on input variables) of the current subfunction, and to fill in the table in such a way as to preserve this independence, and (b) to turn the pages of the decomposition table on the CRT if the table is too long to be displayed at once.

A slightly revised technique for decornposing a subfunction within SFP proceeds as follows:

1. Find all fits. If nothing fits, go to Step 4 below.
2. Correlate or anticorrelate.
3. If nothing is satisfactory, go to Step 4. Otherwise, fill in subfunctions that gave best factor in (2) above. Return to Step 1: for the next subfunction or go the next higher level.
4. Find independences. If none exist, go to Step 5, otherwise, make the subfunction independent of one or more of its variables.
5. Fill in any remaining entries in the table as judiciously as possible and "travel".

A nurnber of other details of CADD-2 are ommitted, since they only differ slightly from CADD-1.
c. Support Phase. The DEL Section of CAD-2 is identical to that of CADD-1, except for details concerning the new data structure. The INF Section is no longer the same as that of CADD-l, since it only need display the current block diagram of the combinational system under synthesis.

CHAPTER IV

RESULTS AND CONCLUSIONS

A. CADD-1

1. Limitations

The CADD-l implementation of the generalized synthesis method given in Chapter III suffers from a few limitations. These limitations, along with methods for eliminating them, are discussed in the present section. A large part of these suggestions are incorporated in CADD-2.

One major limitation is that the synthesis process consumes far too much real time to be commensurate with practical computer-aided design. The extra time is due mostly to waiting while the console (typewriter) types out advice and data, and to a smaller extent due to certain tedious input tasks, such as filling in a long subfunction by hand. The problem can be traced to two distinct sources. The first is that there is too much interaction (overused in CADD-l so as to allow the operator to intervene in all critical tasks). Experimental use of CADD-1 indicated that much of this freedom was unnecessary, and should be eliminated by programming, rather than by interaction. Furthermore, much of the CADD-1 printout was not usually required for the decomposition process. The second source of unnecessary delay is typewriter speed. For example, the decomposition table for a six-variable function covers a complete page and consumes five minutes of typing.

In order iu 1 Educc interaction amount and time, the following changes were deemed appropriate.

1. Program many of the choices now left to the operator. Experience has shown where this can be done with safety.
2. Abbreviate much of the printout, and include options to eliminate printout completely at the operator's discretion.
3. Include ability to chain many commands. To make the process even faster, a decomposition strategy which is considered successful can be included in the input phase along with the building blocks. The program can then simply follow the strategy under normal conditions, resorting to interaction only when special circumstances arise.
4. Add features which enable a short command to accomplish the same objectives as a previously long and tedious input operation.
5. Use a cathode-ray tube graphical display instead of the typewriter for unavoidably long outputs, such as decomposition tables and block diagrams. This feature alone can cut the real-time usage by almost fifty percent.

Another major limitation of the CADD-l implementation is that it is not thorough enough in checking possible moves. Instead, it puts the burden on the operator, who can either go through the tedious process of permuting variables, folding, etc., or simply make quick but arbitrary decisions thus probably missing a "better" solution. Many times the operator is forced to do some tedious processing himself since no command will give him this information. Such processing might involve the determination of dependence of a function on certain variables, or the configuration of an immediately realizable library function within a subfunction.

Since CADD-1 uses a very small amount of computer time (about fifteen seconds for a four-variable function), some greater searching and processing capability can be delegated to the computer.

Most of the above discussion had indicated a probably increase in complexity of the program. Since the CADD-l program is quite large (about two thirds of core memory), simplifications and use of essential features should be considered. One possible simplification is to eliminate the library functions, since they reduce the decomposition by one level, i.e., they eliminate the need for an extra call on MFP and SFP and the filling in of variables. Thus INP can be considerably simplified, and CRLIB and its tributaries can be eliminated. SFP would then be free to do a more perceptive analysis of each function and its possible decompositions, no longer having the added task brought about by library functions.

Finally, many improvements of minor nature can be made in the implementation, such as the standardization of packed components, variable names, data structures, and procedures which vary slightly from each other and the rewriting of many logical subprocesses in FAP rather than AED.
2. Comparison with other Methods

As mentioned in Section C, Chapter I, a universal basis for comparison and evaluation of results of the general synthe sis method is the "brute force" method of converting the synthesis problem to the form of a two-level classical synthesis realization. Nine test cases and their results are shown in Table I. In each case, CADD-1 gives a more optimal solution than the "brute force" techniques.*

Several things should be noted about the results of Table I. First, the cases in which CADD-1 is superior to other methods of synthesis are those which deal with "unusual" sets of building blocks, such as Cases III and IV. The reason for this is that the se sets of blocks lend thernselves less easily to the (Boolean) algebraic manipulations (which underlie the "brute-force" method) than the more standard AND-OR, NOR and NAND gates which have a simpler Boolean algebraic structure. Second, in cases which deal with more conventional blocks, CADD-1 gains advantage from its capability to arrive at more than two-level realizations. Thus, in Case VI, the superiority of CADD-1 lies in being able to construct a symmetrical, four level OR-AND-OR-AND tree, whereas the "brute-force" method needs two extra ANDs in the necessity of maintaining only two levels in the tree. A similar though less symmetrical situation occurs in CASE V, where the total number of block inputs decides the more optimal solution.

On balance, it can be said that CADD-1 represents a reasonable initial step to the solution of the generalized synthesis problem for combinatorial digital networks.

3. Effect of Hurnan Operator

One final question that must be askedis: What is the dependence of the system upon the operator? Or, similarly, what is the effect of the skill of the operator upon the result? There is no doubt that operator skill affects the results in a very positive way; this skill, however, can be acquired after some use of CADD-1 because of the great adaptability of the human brain.

[^10]B. CADD- 2

At the time of the writing of this report, the programming system to implement CADD-2 still contains several program errors which inhibitits full operation. Few test cases can be run without using the areas of the program which contain the se errors. Consequently a complete list of long examples is not included in this report. On the other hand, real-time used for CADD-2 based on a small number of simple examples shows a five-to-one reduction over the time used by CADD-1 for the same examples. A sample run of CADD-2, using the same example as that used in CADD-1, is given in Appendix D.

TABLE 1

Results of Test Cases for CADD-1

CASE	NO. OFVARIABLES		BUILDINGBLOCKS	REALIZATIONS	
		FUNCTION		CADD	UTE-FORCE'
1	6	$\begin{aligned} & \Sigma(0,5,9 \\ & 13,14,24,26, \\ & 32,33,34,35, \\ & 40,51,60) \end{aligned}$	$\begin{aligned} & \text { 3-INPUT } \\ & \text { NOR } \end{aligned}$	40 NORs	48 NORs
II	5	$\begin{gathered} \Sigma(0,5,9 \\ 13,14,24,26) \end{gathered}$	$\begin{aligned} & \text { 3-INPUT } \\ & \text { NAND } \end{aligned}$	16 NANDs	28 NANDs
III	4	$\begin{gathered} \Sigma(0,3,4 \\ 5,6,8,10,15) \end{gathered}$	$\begin{gathered} \text { 3-INPUT } \\ \text { MINORITY } \end{gathered}$	13 MLNs	48 MLNs
IV	4	same	3-INPUT EXCLUSIVE OR, 3-INPUT AND	$\begin{aligned} & 5 \text { ANDs } \\ & 5 \text { XOR s } \end{aligned}$	$\begin{aligned} & 11 \text { ANDs } \\ & 11 \text { XORs } \end{aligned}$
V	4	$\begin{array}{r} \pi(0,1,2 \\ 4,8) \end{array}$	2,3-INPUT ANDs, 2,3-INPUT ORs	$\begin{aligned} & 13 \text {-OR, } \\ & 13 \text {-AND, } \\ & 2 \text { 2-ORs, } \\ & 2 \text { 2-ANDs } \\ & \text { (14 inputs) } \end{aligned}$	$\begin{aligned} & 1 \text { 3-OR, } \\ & 1 \text { 2-OR, } \\ & 4 \text { 3-ANDs } \\ & \text { (17 inputs) } \end{aligned}$
VI	3	$\begin{gathered} \Sigma(1,2,4 \\ 7) \\ (3 \text {-input } \\ \text { XOR }) \end{gathered}$	$\begin{gathered} \text { 2-INPUT } \\ \text { AND, } \\ \text { 2-INPUT } \\ \text { OR } \end{gathered}$	$\begin{aligned} & 3 \text { ORs } \\ & 6 \text { ANDs } \end{aligned}$	$\begin{aligned} & 3 \text { ORs } \\ & 8 \text { ANDs } \end{aligned}$
VII	3	same	$\begin{aligned} & \text { 3-INPUT } \\ & \text { NAND } \end{aligned}$	6 NANDs	8 NANDs
VIII	3	same	$\begin{aligned} & \text { 2-INPUT } \\ & \text { NAND } \end{aligned}$	9 NANDs	18 NANDs
IX	3	$\begin{aligned} & \Sigma(0,2,5) \\ & \text { (see Sample } \\ & \text { Run, APPEND } \\ & \text { C and D) } \end{aligned}$	2-INPUT ES	5 NORs	7 NORs

APPENDIX A

DATA STRUCTURES

CADD-1

Al.l Structures Used in Library Generation 48
Al. 2 Building Block Directory and Library 49
Al. 3 Common Structures Used During Decomposition 50
Al. 4 Typical Tree Element 51

CADD-2

A1.5 CADD-2 Data Structures 52

Fig. Al. 2 Building Block Directory and Library

=

LOWER ORDER \longrightarrow
Fig. A1. 3 Common Structures Used During Decomposition

Fig. Al. 4 Typical Tree Element

Fig. Al. 5 CADD-2 Data Structures

APPENDIX B

DETAILED FLOW CHARTS

Program page
MASTER 55
INP
CRLIB
MF゙P
SFP
IPFIT55 thru 57
FUNSP 58
59 and 60
60 and 61
62 thru 65
SFDCD 6766
INF 68
DEL 69

CONVENTIONS

APPENDIX C

SAMPLE RUN FOR CADD-1

The following sample run is the basis for Case IX in Table l. Upper case characters indicate output, lower case input. In function specifications, "2" stands for DON'T CARE.

```
r synths
W
TYPE. input
INPUTS WILL NOW BE ACCEPTED
TYPE. outfn
SPECIFICATION OF OUTPUT FUNCTION
HOW MANY INPUT VARIABLES
TYPE. }
WHAT ARE THE VARIABLE NAMES
NO MORE THAN SIX CHARACTERS PER NAME PLEASE
TYPE. alpha beta gamma
PROCEED WITH FUNCTION SPECIFICATION
THE FUNCTION IS SPECIFIED BY INDICATING THE VALUE
( 0 = ZERO, l = ONE, 2 = DON'T CARE )
FOR EACH COMBINATION OF INPUT VARIABLE VALUES. A GIVEN SET
OF INPUT VARIABLE VALUES IS TRANSFORMED INTO A 'TERM' BY
MULTIPLYING
GAMMAA BY 1
BETA BY 2
ALPHA BY 4
AND ADDING
TYPE 'TERM' FOR SPECIAL INPUT MODE, OR 'FULL' OTHERWISE
TYPE. term
TYPE INITIAL VALUE OF ALL ELEMENTS
TYPE. O
SPECIFY VALUES OF INDIVIDUAL TERMS AS FOLLOWS
V1 T1 T2 T3 . . . * V2 T1 T2 . . . * *
TYPE. 1 0 2 5 * *
OUTPUT FUNCTION ENTERED
TYPE. bildb
WHAT IS THE NAME OF THE BUILDING BLOCK
NO MORE THAN THREE CHARACTERS PLEASE
TYPE. nor
HOW MANY INPUTS
TYPE. 2
2IPNOR BEING ENTERED
SPECIFY FUNCTION. ONLY ZEROS AND ONES ALLOWED
THE FUNCTION IS SPECIFIED BY INDICATING THE VALUE
FOR EACH COMBINATION OF INPUT VARIABLE VALUES. A GIVEN SET
OF INPUT VARIABLE VALUES IS TRANSFORMED INTO A 'TERM' BY
MULTIPLYING
INPUT1 BY 1
INPUT2 BY 2
AND ADDING
TYPE 'TERM' FOR SPECIAL INPUT MODE, OR 'FULL' OTHERWISE
TYPE. term
TYPE INITIAL VALUE OF ALL ELEmENTS
TYPE. O
SPECIFY VALUES OF INDIVIDUAL TERMS AS FOLLOWS
V1 T1 T2 T3 . . . * V2 T1 T2 . . . * *
TYPE. 1 0 **
BUILDING BLOCK SPECIFIED AND ENTERED IN LIBRARY
TYPE. finls infor
```

INPUTS WILL NO LONGER BE ACCEPTED. RETURN TO TOP LEVEL INFORMATION NOW AVAILABLE
TYPE. mainf
THE MAIN FUNCTION IS
BETA GAMMA
$\begin{array}{rrrr}00 & 01 & 11 & 10 \\ 00 & 1 & 0 & 0 \\ 1\end{array}$
ALPHA
$010 \quad 1 \quad 0 \quad 0$
TYPE. finis mfpic INFORMATION NO LONGER AVAILABLE. RETURN TO TOP LEVEL
READY TO PICK MAIN FUNCTION
TYPE. decid
WHAT IS THE TYPE OF BLOCK TO BE USED
TYPE. 2 Ipnor
MAIN FUNCTION BLOCK HAS BEEN CHOSEN. RETURN TO TOP LEVEL
TYPE. infor
INFORMATION NOW AVAILABLE
TYPE. wktbl
THE DECOMPOSITION TABLE FOR THE PRESENT BLOCK IS
ALPHA BETA GAMMA

TERM	VALUE	IP1	IP2	CHOICES
000	1	0	0	1
001	0			$1-2$
010	1	0	0	$1-$
011	0			$1-2$
100	0			$1-2$
101	1	0	0	$1-2$
110	0			$1-2$
111	0			$1-2$

TYPE. finis sfpic
INFORMATION NO LONGER AVAILABLE. RETURN TO TOP LEVEL
READY TO PICK SUBFUNCTION
TYPE. infit
CONSTANT ZERO
FITTING IS LIMITED TO BUILDING BLŪẼK̇S wiTiti © OR MORE :NPUTS $2 I P N O R C O D E 1$ INPUT2 $=$ NOT GAMMA INPUT1 = NOT BETA
TYPE. inant
2 IPNOR CODE 1 ANTICORRELATION FACTOR = 2
TYPE. sfded
IS THE SUBFUNCTION A CONST, VARB, OR BLOCK
TYPE. block
WHICH BLOCK
TYPE. 2 ipnor
GQRE NUMZER
TYPE. 1
OBJECT IS NOW INPUT 2 OF BLOCK NOROOO
TYPE. Infit
FITTING IS LIMITED TO BUILDING BLOCKS WITH 3 OR MORE INPUTS NO BLOCK HAS SUFFICIENT INPUTS
TYPE. finis infor
SUBFUNCTION CHOICE DISABLED. RETURN TO TOP LEVEL INFORMATIOUN NOUW ÂVÁILABLE
TYPE. wktbl

THE DECOMPOSITION TABLE FOR THE PRESENT BLOCK IS ALPHA BETA GAMMA

TERM	VALUE	IP1	IP2	CHOICES
000	1	0	0	1
001	0	0	1	1
010	1	0	0	1
011	0	1		$1-2$
100	0	0	1	1
101	1	0	0	1
110	0	0	1	1
111	0	1		$1-2$

TYPE. finis sfpic
information no longer available. return to top level
READY TO PICK SUBFUNCTION
TYPE. itpic
WHICH ROW
TYPE. 3
what value
TYPE. 2
TYPE. itpic
WHICH ROW
TYPE. 7
IWHAT VALUE
TYPE. 2
INPUT 2 FILLED
TYPE. travi mfpic
TRAVELING. RETURN TO TOP LEVEL
READY TO PICK MAIN FUNCTION
TYPE. decid
What is the type of block to be used
TYPE, 2 ipor
2IPOR HAS NOT BEEN SPECIFIED
TYPE. decid
WHAT IS THE TYPE OF blOCK TO BE USED
TYPE. 2 ipnor
MAIN FUNCTION BLOCK HAS BEEN CHOSEN. RETURN TO TOP LEVEL
TYPE. Infor
INFORMATION NOW AVAILABLE
TYPE. wktbl
THE DECOMPOSITION TABLE FOR THE PRESENT BLOCK IS
GAMMA ALPHA

TERM	VALUE	IPI	IP2	CHOICES
00	0		$1-2$	
01	1	0	0	1
10	1	0	0	1
11	0			$1-2$

TYPE. finis sfplc
INFORMATION NO LONGER AVAILABLE. RETURN TO TOP LEVEL
READY TO PICK SUBFUNCTION
TYPE. Infit
constant zero
FITTING IS LIMITED TO BUILDING BLOCKS WITH O OR MORE INPUTS
2 IPNOR CODE 1 INPUT2 = NOT ALPHA INPUTI = NOT GAMMA
2 IPNOR CODE 4 INPUT2 = ALPHA INPUTI = GAMMA
TYPE. sfded

```
IS THE SUBFUNCTION A CONST, VARB, OR BLOCK
TYPE. block
WHICH BLOCK
TYPE. 2ipnor
CODE NUMBER
TYPE. 1
OBJECT IS NOW INPUT 2 OF BLOCK NOROO2
TYPE. infit
FITTING IS LIMITED TO BUILDING BLOCKS WITH 2 OR MORE INPUTS
2IPNOR CODE 4 INPUT2 = ALPHA INPUTI = GAMMA
TYPE. sfdcd
IS THE SUBFUNCTION A CONST, VARB, OR BLOCK
TYPE. block
WHICH BLOCK
TYPE. 2ipnor
CODE NUMBER
TYPE. }
NORO02 HAS NOW BEEN COMPLETELY SPECIFIED
NOR000 HAS NOW BEEN COMPLETELY SPECIFIED
DECOMPOSITION DONE. RETURN TO TOP LEVEL
TYPE. infor
INFORMATION NOW AVAILABLE
TYPE. trepr
NOROOO
    |P1----NOR001
                |P1----NOT BETA
                IP2----NOT GAMMA
    |P2----NOROO2
                IP1----NOR003
                            |P1----NOT GAMMA
                                    |P2----NOT ALPHA
                                    !n2----NOROn4
                                    |P1----GAMMA
                                    |P2-----ALPHA
```

TYPE, finis termn
INFORMATION NO LONGER AVAILABLE, RETURN TO TOP LEVEL R

APPENDIX D

SAMPLE RUN FOR CADD-2

The following sample run covers the same problem as in Appendix C. All displays, with the exception of a few that were redundant are given at the point in the text where they occurred.

```
r synth2
W
EXECUTION.
MASTER COMMAND input
INPUT COMMAND outfn
FUNCTION PROGRAM *
NUMBER AND NAMES OF VARIABLES 3 a b c
MAJOR VALUE AND MINORITY ELEMENTS 0 0 2 5 *
INPUT COMMAND bildb
BLOCK NAME two-nor
BIOCK PROGRAM norip2
    NEED NORIP2
    GIVE LOADING COMMANDS
    TYPE. USE norip2
INPUT COMMAND finis mfpic sfpic
INPUT PICK COMMAND
```


itpic 1137 * 246 * * *
INPUT PICK COMMAND

indep
SYMMETRIC ABOUT VARIABLES 1
VARIABLE NUMBER 1 *
INPUT 1 FILLED
INPUT 2 FILLED
INPUT PICK COMMAND

travl mfpic sfpic I NPUT PICK COMMAND

infit
CONSTANT ZERO (1) VARIABLES NOT C (2) NOT B (3) INPUT PICK COMMAND inant
$(1)=-3(2)=1(3)=1$ INPUT PICK COMMAND sfdcd FIT NUMBER 2 INPUT 2 FILLED OBJECT IS NOW INPUT 2 OF BLOCK TWO-NORI INPUT PICK COMMȦṄ̃̄


```
infit sfdcd
VARIABLES NOT B ( 1)
FIT NUMBER 1
TWO-NOR1 HAS NOW BEEN COMPLETELY SPECIFIED
OBJECT IS NOW INPUT 2 OF BLOCK TWO-NORO
INPUT PICK COMMAND
```


travl mfpic sfpic
INPUT PICK COMMAND

CONSTANT ZERO (1)
INPUT PICK COMMAND
infit

INPUT 1 FILLED
INPUT 2 FILLED
INPUT PICK COMIMAND

travl mfnic sfpic

infit sfdcd 1 travl mfpic sfpic
VARIABLES A (1)
TWO-NOR3 HAS NOW BEEN COMPLETELY SPECIFIED OBJECT IS NOW INPUT 2 OF BLOCK TWO-NOR2
INPUT PICK COMMAND infit sfded
CONSTANT ZERO (1)
VARIABLES NOT C (2) NOT A (3)
FIT NUMBER 2 infit sided 1
INPUT 2 FILLED
OBJECT IS NOW INPUT 2 OF BLOCK TWO-NOR4
VARIABLES NOT A (1)
TWO-NOR 4 HAS NOW BEEN COMPLETELY SPECIFIED
TWO-NOR2 HAS NOW BEEN COMPLETELY SPECIFIED
TWO-NORO HAS NOW BEEN COMPLETELY SPECIFIED
DECOMPOSITION DONE
MASTER COMMAND termn
R

BIBLIOGRAPHY

1. Class Notes for MIT Course 6. 252 Digital Systems Engineering.
2. a) Quine, W.V., "A Way to Simplify Truth Functions:" The American Mathematical Monthly, Vol. 62, November 1955, Pp. 627-631.
b) McCluskey, E.J., Jr,, 'Minimization of Boolean Functions," The Bell System Technical Journal, November 1956, p. 1417.
3. Ross, D. T., AED-0 Programming Manual, Preliminary Releases 1 through 4, AED Flashes 1 through 15, and Internal Memorandum, 1964-65.
4. Fortran II Assembly Program (FAP), IBM Form C28-6235-2, 1963.

[^0]: At no point in the method to be discussed is the logical completeness of a given set questioned. The proof of completeness is, in general, a difficult task and has therefore been assumed to be already shown.

[^1]: A library composed of functions generated by permuting and negating inputs of all the available building blocks.

[^2]: * Superscripts refer to numbered items in the Bibliography.

[^3]: The current function may be the result of successive decompositions of the original function, or the original function itself.

[^4]: Sections 2 through 4 apply to CADD-1 only.

[^5]: A constant, variable, negated variable, library function (CADD-1 only), or a previously realized function (CADD-2 only). *;

 Anticorrelation is the negative of the correlation.

[^6]: Restrictions are any situations which limit decomposition operations such as folding, fitting, etc.

[^7]: Copies of all programs are available from Paul J. Santos, Jr. at the Electronic Systems Laboratory.

[^8]: A typical feature of all the command subroutines.

[^9]: *Satisfaction rests with the operator and involves fitting, along with the fullfilment of certain criteria of goodness.

[^10]: Where it is assumed that both complemented and uncomplemented variables are available.

