research

Proving strong magnetic fields near to the central black hole in the quasar PG0043+039 via cyclotron lines

Abstract

The optical luminous quasar PG0043+039 has not been detected before in deep X-ray observations indicating the most extreme optical-to-X-ray slope index αox{\alpha}_{ox} of all quasars. This study aims to detect PG0043+039 in a deep X-ray exposure. Furthermore, we wanted to check out whether this object shows specific spectral properties in other frequency bands. We took deep X-ray (XMM-Newton), far-ultraviolet (HST), and optical (HET, SALT telescopes) spectra of PG0043+039 simultaneously in July 2013. We just detected PG0043+039 in our deep X-ray exposure. The steep αox=2.37±0.05{\alpha}_{ox} = -2.37 {\pm} 0.05 gradient is consistent with an unusual steep gradient FνναF_{\nu} {\sim} {\nu}^{\alpha} with α=2.67±0.02{\alpha} = -2.67 {\pm} 0.02 seen in the UV/far-UV continuum. The optical/UV continuum flux has a clear maximum near 2500 {\AA}. The UV spectrum is very peculiar because it shows broad humps in addition to known emission lines. A modeling of these observed humps with cyclotron lines can explain their wavelength positions, their relative distances, and their relative intensities. We derive plasma temperatures of T {\sim} 3keV and magnetic field strengths of B {\sim} 2 ×108{\times} 10^8 G for the line-emitting regions close to the black hole.Comment: 4 pages, 3 figures, Astronomy & Astrophysics in pres

    Similar works