20,713 research outputs found
Sympathetic cooling of trapped fermions by bosons in the presence of particle losses
We study the sympathetic cooling of a trapped Fermi gas interacting with an
ideal Bose gas below the critical temperature of the Bose-Einstein
condensation. We derive the quantum master equation, which describes the
dynamics of the fermionic component, and postulating the thermal distribution
for both gases we calculate analytically the rate at which fermions are cooled
by the bosonic atoms. The particle losses constitute an important source of
heating of the degenerate Fermi gas. We evaluate the rate of loss-induced
heating and derive analytical results for the final temperature of fermions,
which is limited in the presence of particle losses.Comment: 7 pages, 2 figures, EPL style; final versio
Transitional random matrix theory nearest-neighbor spacing distributions
This paper presents a study of the properties of a matrix model that was
introduced to describe transitions between all Wigner surmises of Random Matrix
theory. New results include closed-form exact analytical expressions for the
transitional probability density functions, as well as suitable analytical
approximations for cases not amenable to explicit representation
Laser Cooling of Trapped Fermi Gases deeply below the Fermi Temperature
We study the collective Raman cooling of a polarized trapped Fermi gas in the
Festina Lente regime, when the heating effects associated with photon
reabsorptions are suppressed. We predict that by adjusting the spontaneous
Raman emission rates and using appropriately designed anharmonic traps,
temperatures of the order of 2.7% of the Fermi temperature can be achieved in
3D.Comment: 4 pages, 3 figures; final versio
Nonlinear viscosity and velocity distribution function in a simple longitudinal flow
A compressible flow characterized by a velocity field is
analyzed by means of the Boltzmann equation and the Bhatnagar-Gross-Krook
kinetic model. The sign of the control parameter (the longitudinal deformation
rate ) distinguishes between an expansion () and a condensation ()
phenomenon. The temperature is a decreasing function of time in the former
case, while it is an increasing function in the latter. The non-Newtonian
behavior of the gas is described by a dimensionless nonlinear viscosity
, that depends on the dimensionless longitudinal rate . The
Chapman-Enskog expansion of in powers of is seen to be only
asymptotic (except in the case of Maxwell molecules). The velocity distribution
function is also studied. At any value of , it exhibits an algebraic
high-velocity tail that is responsible for the divergence of velocity moments.
For sufficiently negative , moments of degree four and higher may diverge,
while for positive the divergence occurs in moments of degree equal to or
larger than eight.Comment: 18 pages (Revtex), including 5 figures (eps). Analysis of the heat
flux plus other minor changes added. Revised version accepted for publication
in PR
Análise exploratória dos atributos químicos em solos do cerrado sob diferentes manejo e uso.
FertBio 2014
Fabrication and Electrical Characterization of Translucent Bi 12
The production of high-density Bi12TiO20 ceramics, their transmission spectrum, and impedance features are reported. The samples were synthesized at 700°C/6 h and sintered at 800°C/3 h. This procedure yielded translucent ceramics with relative density of 99.2±0.5% and average grain size of 3.1±1.6 μm. Samples with 0.5 mm thickness were translucent with optical transmission of about 30% at 800 nm. The electrical and dielectric properties of the high-density ceramics were studied and compared with those measured for samples with lower density and also with the literature about Bi12TiO20 single crystals. The activation energy for the conduction process in high-density ceramic was 0.99 eV, and the dielectric permittivity was 40 at 200°C. These values are comparable to those reported for single crystals
Pressure tuning of structure, superconductivity and novel magnetic order in the Ce-underdoped electron-doped cuprate T'-Pr_1.3-xLa_0.7Ce_xCuO_4 (x = 0.1)
High-pressure neutron powder diffraction, muon-spin rotation and
magnetization studies of the structural, magnetic and the superconducting
properties of the Ce-underdoped superconducting (SC) electron-doped cuprate
system T'-Pr_1.3-xLa_0.7Ce_xCuO_4 with x = 0.1 are reported. A strong reduction
of the lattice constants a and c is observed under pressure. However, no
indication of any pressure induced phase transition from T' to T structure is
observed up to the maximum applied pressure of p = 11 GPa. Large and non-linear
increase of the short-range magnetic order temperature T_so in
T'-Pr_1.3-xLa_0.7Ce_xCuO_4 (x = 0.1) was observed under pressure.
Simultaneously pressure causes a non-linear decrease of the SC transition
temperature T_c. All these experiments establish the short-range magnetic order
as an intrinsic and a new competing phase in SC T'-Pr_1.2La_0.7Ce_0.1CuO_4. The
observed pressure effects may be interpreted in terms of the improved nesting
conditions through the reduction of the in-plane and out-of-plane lattice
constants upon hydrostatic pressure.Comment: 11 pages, 10 figure
JWST observations of stellar occultations by solar system bodies and rings
In this paper we investigate the opportunities provided by the James Webb
Space Telescope (JWST) for significant scientific advances in the study of
solar system bodies and rings using stellar occultations. The strengths and
weaknesses of the stellar occultation technique are evaluated in light of
JWST's unique capabilities. We identify several possible JWST occultation
events by minor bodies and rings, and evaluate their potential scientific
value. These predictions depend critically on accurate a priori knowledge of
the orbit of JWST near the Sun-Earth Lagrange-point 2 (L2). We also explore the
possibility of serendipitous stellar occultations by very small minor bodies as
a by-product of other JWST observing programs. Finally, to optimize the
potential scientific return of stellar occultation observations, we identify
several characteristics of JWST's orbit and instrumentation that should be
taken into account during JWST's development.Comment: This paper is one of a series for a special issue on Solar System
observations with JWST in PASP. Accepted 2-Oct-2015. Preprint 30 pages, 5
tables, 8 figure
- …