38,334 research outputs found

    Line-profile variations in radial-velocity measurements: Two alternative indicators for planetary searches

    Full text link
    Aims. We introduce two methods to identify false-positive planetary signals in the context of radial-velocity exoplanet searches. The first is the bi-Gaussian cross-correlation function fitting, and the second is the measurement of asymmetry in radial-velocity spectral line information content, Vasy. Methods. We make a systematic analysis of the most used common line profile diagnosis, Bisector Inverse Slope and Velocity Span, along with the two proposed ones. We evaluate all these diagnosis methods following a set of well-defined common criteria and using both simulated and real data. We apply them to simulated cross-correlation functions created with the program SOAP and which are affected by the presence of stellar spots, and to real cross-correlation functions, calculated from HARPS spectra, for stars with a signal originating both in activity and created by a planet. Results. We demonstrate that the bi-Gaussian method allows a more precise characterization of the deformation of line profiles than the standard bisector inverse slope. The calculation of the deformation indicator is simpler and its interpretation more straightforward. More importantly, its amplitude can be up to 30% larger than that of the bisector span, allowing the detection of smaller-amplitude correlations with radial-velocity variations. However, a particular parametrization of the bisector inverse slope is shown to be more efficient on high-signal-to-noise data than both the standard bisector and the bi-Gaussian. The results of the Vasy method show that this indicator is more effective than any of the previous ones, being correlated with the radial-velocity with more significance for signals resulting from a line deformation. Moreover, it provides a qualitative advantage over the bisector, showing significant correlations with RV for active stars for which bisector analysis is inconclusive. (abridged)Comment: 12 pages, 7 figures, accepted for publication in Astronomy and Astrophysics, comments welcom

    Probing the effect of gravitational microlensing on the measurements of the Rossiter-McLaughlin effect

    Full text link
    In general, in the studies of transit light-curves and the Rossiter-McLaughlin (RM), the contribution of the planet's gravitational microlensing is neglected. Theoretical studies, have, however shown that the planet's microlensing can affect the transit light-curve and in some extreme cases cause the transit depth to vanish. In this letter, we present the results of our quantitative analysis of microlening on the RM effect. Results indicate that for massive planets in on long period orbits, the planet's microlensing will have considerable contribution to the star's RV measurements. We present the details of our study, and discuss our analysis and results.Comment: 6 pages, 3 figures, accepted for publication in Astronomy & Astrophysic

    Impact of stellar companions on precise radial velocities

    Full text link
    Context: With the announced arrival of instruments such as ESPRESSO one can expect that several systematic noise sources on the measurement of precise radial velocity will become the limiting factor instead of photon noise. A stellar companion within the fiber is such a possible noise source. Aims: With this work we aim at characterizing the impact of a stellar companion within the fiber to radial velocity measurements made by fiber-fed spectrographs. We consider the contaminant star either to be part of a binary system whose primary star is the target star, or as a background/foreground star. Methods: To carry out our study, we used HARPS spectra, co-added the target with contaminant spectra, and then compared the resulting radial velocity with that obtained from the original target spectrum. We repeated this procedure and used different tunable knobs to reproduce the previously mentioned scenarios. Results: We find that the impact on the radial velocity calculation is a function of the difference between individual radial velocities, of the difference between target and contaminant magnitude, and also of their spectral types. For the worst-case scenario in which both target and contaminant star are well centered on the fiber, the maximum contamination for a G or K star may be higher than 10 cm/s, on average, if the difference between target and contaminant magnitude is Δm\Delta m < 10, and higher than 1 m/s if Δm\Delta m < 8. If the target star is of spectral type M, Δm\Delta m < 8 produces the same contamination of 10 cm/s, and a contamination may be higher than 1 m/sComment: Accepted for publication in A&A on 29/12/2019 - 14 page

    Revisiting the correlation between stellar activity and planetary surface gravity

    Full text link
    Aims: We re-evaluate the correlation between planetary surface gravity and stellar host activity as measured by the index log(RHK′R'_{HK}). This correlation, previously identified by Hartman (2010), is now analyzed in light of an extended measurements dataset, roughly 3 times larger than the original one. Methods: We calculated the Spearman's rank correlation coefficient between the two quantities and its associated p-value. The correlation coefficient was calculated for both the full dataset and the star-planet pairs that follow the conditions proposed by Hartman (2010). In order to do so, we considered effective temperatures both as collected from the literature and from the SWEET-Cat catalog, which provides a more homogeneous and accurate effective temperature determination. Results: The analysis delivers significant correlation coefficients, but with a lower value than those obtained by Hartman (2010). Yet, the two datasets are compatible, and we show that a correlation coefficient as large as previously published can arise naturally from a small-number statistics analysis of the current dataset. The correlation is recovered for star-planet pairs selected using the different conditions proposed by Hartman (2010). Remarkably, the usage of SWEET-Cat temperatures leads to larger correlation coefficient values. We highlight and discuss the role of the correlation betwen different parameters such as effective temperature and activity index. Several additional effects on top of those discussed previously were considered, but none fully explains the detected correlation. In light of the complex issue discussed here, we encourage the different follow-up teams to publish their activity index values in the form of log(RHK′R'_{HK}) index so that a comparison across stars and instruments can be pursued.Comment: 11 pages, 3 figures, accepted for publication in A&

    Dark Matter directional detection: comparison of the track direction determination

    Full text link
    Several directional techniques have been proposed for a directional detection of Dark matter, among others anisotropic crystal detectors, nuclear emulsion plates, and low-pressure gaseous TPCs. The key point is to get access to the initial direction of the nucleus recoiling due to the elastic scattering by a WIMP. In this article, we aim at estimating, for each method, how the information of the recoil track initial direction is preserved in different detector materials. We use the SRIM simulation code to emulate the motion of the first recoiling nucleus in each material. We propose the use of a new observable, D, to quantify the preservation of the initial direction of the recoiling nucleus in the detector. We show that in an emulsion mix and an anisotropic crystal, the initial direction is lost very early, while in a typical TPC gas mix, the direction is well preserved.Comment: 9 pages, 5 figure

    Can stellar activity make a planet seem misaligned?

    Full text link
    Several studies have shown that the occultation of stellar active regions by the transiting planet can generate anomalies in the high-precision transit light curves, and these anomalies may lead to an inaccurate estimate of the planetary parameters (e.g., the planet radius). Since the physics and geometry behind the transit light curve and the Rossiter- McLaughlin effect (spectroscopic transit) are the same, the Rossiter-McLaughlin observations are expected to be affected by the occultation of stellar active regions in a similar way. In this paper we perform a fundamental test on the spin-orbit angles as derived by Rossiter-McLaughlin measurements, and we examine the impact of the occultation of stellar active regions by the transiting planet on the spin-orbit angle estimations. Our results show that the inaccurate estimation on the spin-orbit angle due to stellar activity can be quite significant (up to 30 degrees), particularly for the edge-on, aligned, and small transiting planets. Therefore, our results suggest that the aligned transiting planets are the ones that can be easily misinterpreted as misaligned owing to the stellar activity. In other words, the biases introduced by ignoring stellar activity are unlikely to be the culprit for the highly misaligned systems.Comment: 8 pages, 8 figures, accepted for publication in Astronomy & Astrophysic

    Further constraints on the optical transmission spectrum of HAT-P-1b

    Get PDF
    We report on novel observations of HAT-P-1 aimed at constraining the optical transmission spectrum of the atmosphere of its transiting Hot-Jupiter exoplanet. Ground-based differential spectrophotometry was performed over two transit windows using the DOLORES spectrograph at the Telescopio Nazionale Galileo (TNG). Our measurements imply an average planet to star radius ratio equal to Rp/R⋆\rm R_p/R_{\star}=(0.1159±\pm0.0005). This result is consistent with the value obtained from recent near infrared measurements of this object but differs from previously reported optical measurements being lower by around 4.4 exoplanet scale heights. Analyzing the data over 5 different spectral bins 600\AA \, wide we observed a single peaked spectrum (3.7 σ\rm\sigma level) with a blue cut-off corresponding to the blue edge of the broad absorption wing of sodium and an increased absorption in the region in between 6180-7400\AA. We also infer that the width of the broad absorption wings due to alkali metals is likely narrower than the one implied by solar abundance clear atmospheric models. We interpret the result as evidence that HAT-P-1b has a partially clear atmosphere at optical wavelengths with a more modest contribution from an optical absorber than previously reported.Comment: Accepted by Ap

    Impact of micro-telluric lines on precise radial velocities and its correction

    Full text link
    Context: In the near future, new instruments such as ESPRESSO will arrive, allowing us to reach a precision in radial-velocity measurements on the order of 10 cm/s. At this level of precision, several noise sources that until now have been outweighed by photon noise will start to contribute significantly to the error budget. The telluric lines that are not neglected by the masks for the radial velocity computation, here called micro-telluric lines, are one such noise source. Aims: In this work we investigate the impact of micro-telluric lines in the radial velocities calculations. We also investigate how to correct the effect of these atmospheric lines on radial velocities. Methods: The work presented here follows two parallel lines. First, we calculated the impact of the micro-telluric lines by multiplying a synthetic solar-like stellar spectrum by synthetic atmospheric spectra and evaluated the effect created by the presence of the telluric lines. Then, we divided HARPS spectra by synthetic atmospheric spectra to correct for its presence on real data and calculated the radial velocity on the corrected spectra. When doing so, one considers two atmospheric models for the synthetic atmospheric spectra: the LBLRTM and TAPAS. Results: We find that the micro-telluric lines can induce an impact on the radial velocities calculation that can already be close to the current precision achieved with HARPS, and so its effect should not be neglected, especially for future instruments such as ESPRESSO. Moreover, we find that the micro-telluric lines' impact depends on factors, such as the radial velocity of the star, airmass, relative humidity, and the barycentric Earth radial velocity projected along the line of sight at the time of the observation.Comment: Accepted in A&
    • …
    corecore