26,560 research outputs found
Exploring spin-orbital models with dipolar fermions in zig-zag optical lattices
Ultra-cold dipolar spinor fermions in zig-zag type optical lattices can mimic
spin-orbital models relevant in solid-state systems, as transition-metal oxides
with partially filled d-levels, with the interesting advantage of reviving the
quantum nature of orbital fluctuations. We discuss two different physical
systems in which these models may be simulated, showing that the interplay
between lattice geometry and spin-orbital quantum dynamics produces a wealth of
novel quantum phases.Comment: 4 pages + supplementary materia
Quantum open systems and turbulence
We show that the problem of non conservation of energy found in the
spontaneous localization model developed by Ghirardi, Rimini and Weber is very
similar to the inconsistency between the stochastic models for turbulence and
the Navier-Stokes equation. This sort of analogy may be useful in the
development of both areas.Comment: to appear in Physical Review
Static cylindrical symmetry and conformal flatness
We present the whole set of equations with regularity and matching conditions
required for the description of physically meaningful static cylindrically
symmmetric distributions of matter, smoothly matched to Levi-Civita vacuum
spacetime. It is shown that the conformally flat solution with equal principal
stresses represents an incompressible fluid. It is also proved that any
conformally flat cylindrically symmetric static source cannot be matched
through Darmois conditions to the Levi-Civita spacetime. Further evidence is
given that when the Newtonian mass per unit length reaches 1/2 the spacetime
has plane symmetry.Comment: 13 pages, Late
Expansion-Free Evolving Spheres Must Have Inhomogeneous Energy Density Distributions
In a recent paper a systematic study on shearing expansion-free spherically
symmetric distributions was presented. As a particular case of such systems,
the Skripkin model was mentioned, which corresponds to a nondissipative perfect
fluid with a constant energy density. Here we show that such a model is
inconsistent with junction conditions. It is shown that in general for any
nondissipative fluid distribution, the expansion-free condition requires the
energy density to be inhomogeneous. As an example we consider the case of dust,
which allows for a complete integration.Comment: 8 pages, Latex. To appear in Phys. Rev.D. Typos correcte
Landau levels of cold atoms in non-Abelian gauge fields
The Landau levels of cold atomic gases in non-Abelian gauge fields are
analyzed. In particular we identify effects on the energy spectrum and density
distribution which are purely due to the non-Abelian character of the fields.
We investigate in detail non-Abelian generalizations of both the Landau and the
symmetric gauge. Finally, we discuss how these non-Abelian Landau and symmetric
gauges may be generated by means of realistically feasible lasers in a tripod
scheme.Comment: 13 pages, 9 figure
Spontaneous breaking of spatial and spin symmetry in spinor condensates
Parametric amplification of quantum fluctuations constitutes a fundamental
mechanism for spontaneous symmetry breaking. In our experiments, a spinor
condensate acts as a parametric amplifier of spin modes, resulting in a twofold
spontaneous breaking of spatial and spin symmetry in the amplified clouds. Our
experiments permit a precise analysis of the amplification in specific spatial
Bessel-like modes, allowing for the detailed understanding of the double
symmetry breaking. On resonances that create vortex-antivortex superpositions,
we show that the cylindrical spatial symmetry is spontaneously broken, but
phase squeezing prevents spin-symmetry breaking. If, however, nondegenerate
spin modes contribute to the amplification, quantum interferences lead to
spin-dependent density profiles and hence spontaneously-formed patterns in the
longitudinal magnetization.Comment: 5 pages, 4 figure
Tutoramento de plantas de ervilha visando à produção de grãos secos.
bitstream/CNPT-2010/40286/1/p-bp13.pd
Geometrically induced singular behavior of entanglement
We show that the geometry of the set of quantum states plays a crucial role
in the behavior of entanglement in different physical systems. More
specifically it is shown that singular points at the border of the set of
unentangled states appear as singularities in the dynamics of entanglement of
smoothly varying quantum states. We illustrate this result by implementing a
photonic parametric down conversion experiment. Moreover, this effect is
connected to recently discovered singularities in condensed matter models.Comment: v2: 4 pags, 4 figs. A discussion before the proof of Proposition 1
and tomographic results were included, Propostion 2 was removed and the
references were fixe
- …