2,318 research outputs found

    Chemical effects in ion mixing of a ternary system (metal-SiO_2)

    Get PDF
    The mixing of Ti, Cr, and Ni thin films with SiO_2 by low‐temperature (−196–25 °C) irradiation with 290 keV Xe has been investigated. Comparison of the morphology of the intermixed region and the dose dependences of net metal transport into SiO_2 reveals that long range motion and phase formation probably occur as separate and sequential processes. Kinetic limitations suppress chemical effects in these systems during the initial transport process. Chemical interactions influence the subsequent phase formation

    Physics-Based Control Methods

    Get PDF

    Non-Volatile Memory Characteristics of Submicrometre Hall Structures Fabricated in Epitaxial Ferromagnetic MnAl Films on GaAs

    Get PDF
    Hall-effect structures with submicrometre linewidths (<0.3pm) have been fabricated in ferromagnetic thin films of Mn[sub 0.60]Al[sub 0.40] which are epitaxially grown on a GaAs substrate. The MnAl thin films exhibit a perpendicular remanent magnetisation and an extraordinary Hall effect with square hysteretic behaviour. The presence of two distinct stable readout states demonstrates the potential of using ultrasmall ferromagnetic volumes for electrically addressable, nonvolatile storage of digital information

    Epitaxial-tau(Mn,Ni)Al/(Al,Ga)As heterostructures: Magnetic and magneto-optic properties

    Get PDF
    Ferromagnetic Perpendicularly magnetized epitaxial thin films of tau (Mn,Ni)AI have been successfully grown on AlAs/GaAs heterostructures by molecular beam epitaxy. We have investigated the polar Kerr rotation and magnetization of tau MnAl and (Mn,Ni) Al as a function of Mn and Ni concentration. The largest polar Kerr rotation and remnant magnetization were obtained for Mn0.5Al0.5 thin films with values of 0.16-degrees and 224 emu/cm3, respectively. We observed that the Kerr rotation and magnetization remained constant with Ni additions up to about 12 at. % and subsequently decreased with further Ni additions. We discuss these results and one possible method of enhancing the Kerr rotation

    The extraordinary Hall effect in coherent epitaxial tau (Mn,Ni)Al thin films on GaAs

    Get PDF
    Ultrathin coherent epitaxial films of ferromagnetic tau(Mn,Ni)0.60Al0.40 have been grown by molecular beam epitaxy on GaAs substrates. X-ray scattering and cross-sectional transmission electron microscopy measurements confirm that the c axis of the tetragonal tau unit cell is aligned normal to the (001) GaAs substrate. Measurements of the extraordinary Hall effect (EHE) show that the films are perpendicularly magnetized, exhibiting EHE resistivities saturating in the range of 3.3-7.1 muOMEGA-cm at room temperature. These values of EHE resistivity correspond to signals as large as +7 and -7 mV for the two magnetic states of the film with a measurement current of 1 mA. Switching between the two magnetic states is found to occur at distinct field values that depend on the previously applied maximum field. These observations suggest that the films are magnetically uniform. As such, tau(Mn,Ni)Al films may be an excellent medium for high-density storage of binary information

    Reaction of amorphous Ni-W and Ni-N-W films with substrate silicon

    Get PDF
    Amorphous films of Ni-W and Ni-N-W were deposited on single-crystal silicon with discharge gases of Ar or Ar+N2 by rf cosputtering of Ni and W. The reaction of these Ni-W and Ni-N-W films with the Si substrate were studied in the temperature range of 450–750 °C by a combination of backscattering spectrometry, x-ray diffraction, cross-sectional transmission electron microscopy, and resistivity measurements. Films with composition Ni36W64 are stable below 500 °C. NiSi and NiSi2 form at 500 °C, and WSi2 forms rapidly in the temperature range of 625–650 °C. The nickel silicide forms adjacent to and within the silicon, while the outer layer becomes a mixture of WSi2 and NiSi2. The morphologies of the reacted layers are revealed by cross-sectional transmission electron microscopy. The crystallization temperature of amorphous Ni36W64 films on SiO2 is near 650 °C also. Adding nitrogen to form amorphous Ni30N21W49 films lowers the crystallization temperature, but raises the reaction temperature with Si to 750 °C

    Food security under high bioenergy demand toward long-term climate goals

    Get PDF
    Bioenergy is expected to play an important role in the achievement of stringent climate-change mitigation targets requiring the application of negative emissions technology. Using a multi-model framework, we assess the effects of high bioenergy demand on global food production, food security, and competition for agricultural land. Various scenarios simulate global bioenergy demands of 100, 200, 300, and 400 exajoules (EJ) by 2100, with and without a carbon price. Six global energy-economy-agriculture models contribute to this study, with different methodologies and technologies used for bioenergy supply and greenhouse-gas mitigation options for agriculture. We find that the large-scale use of bioenergy, if not implemented properly, would raise food prices and increase the number of people at risk of hunger in many areas of the world. For example, an increase in global bioenergy demand from 200 to 300 EJ causes a − 11% to + 40% change in food crop prices and decreases food consumption from − 45 to − 2 kcal person−1 day−1, leading to an additional 0 to 25 million people at risk of hunger compared with the case of no bioenergy demand (90th percentile range across models). This risk does not rule out the intensive use of bioenergy but shows the importance of its careful implementation, potentially including regulations that protect cropland for food production or for the use of bioenergy feedstock on land that is not competitive with food production

    Worker/wrapper/makes it/faster

    Get PDF
    Much research in program optimization has focused on formal approaches to correctness: proving that the meaning of programs is preserved by the optimisation. Paradoxically, there has been comparatively little work on formal approaches to efficiency: proving that the performance of optimized programs is actually improved. This paper addresses this problem for a general-purpose optimization technique, the worker/wrapper transformation. In particular, we use the call-by-need variant of improvement theory to establish conditions under which the worker/wrapper transformation is formally guaranteed to preserve or improve the time performance of programs in lazy languages such as Haskell

    Realistic Earth escape strategies for solar sailing

    Get PDF
    With growing interest in solar sailing comes the requirement to provide a basis for future detailed planetary escape mission analysis by drawing together prior work, clarifying and explaining previously anomalies. Previously unexplained seasonal variations in sail escape times from Earth orbit are explained analytically and corroborated within a numerical trajectory model. Blended-sail control algorithms, explicitly independent of time, which providenear-optimal escape trajectories and maintain a safe minimum altitude and which are suitable as a potential autonomous onboard controller, are then presented. These algorithms are investigated from a range of initial conditions and are shown to maintain the optimality previously demonstrated by the use of a single-energy gain control law but without the risk of planetary collision. Finally, it is shown that the minimum sail characteristic acceleration required for escape from a polar orbit without traversing the Earth shadow cone increases exponentially as initial altitude is decreased
    • …
    corecore