1,039 research outputs found

    Changes in Weight Loss, Health Behaviors, and Intentions among 400 Participants Who Dropped out from an Insurance-Sponsored, Community-Based Weight Management Program

    Get PDF
    The majority of weight management research is based on data from randomized controlled studies conducted in clinical settings. As these findings are translated into community-based settings, additional research is needed to understand patterns of lifestyle change and dropout. The purpose of this study was to examine reasons for and consequences associated with dropout (or removal) from an insurance-funded weight management program. Using a mixed methods approach with objectively measured changes in body weight and attendance along with quantitative and qualitative survey data, patterns of intention and behavior change were explored. The results from a sample of 400 respondents support the idea that there are both positive and negative consequences of program participation. Overall, 1 in 5 respondents lost a clinically significant amount of weight during the program (\u3e5% of baseline body weight) and 1 in 3 experienced a positive consequence, while only 6% expressed a negative outcome of participation. Additionally, nearly 90% of all of the consequences that emerged from the data were positive. Attitude change was a major theme, including positive health intentions, perceived success, learning skills, and new appreciation of exercise

    Japan’s Long-term Energy Demand and Supply Scenario to 2050 – Estimation for the Potential of Massive CO2 Mitigation

    Get PDF
    In this analysis, we projected Japans energy demand/supply and energy-related CO2 emissions to 2050. Our analysis of various scenarios indicated that Japans CO2 emissions in 2050 could be potentially reduced by 26-58% from the current level (FY 2005) (Figure 1). These results suggest that Japan could set a CO2 emission reduction target for 2050 at between 30% and 60%. In order to reduce CO2 emissions by 60% in 2050 from the present level, Japan will have to strongly promote energy conservation at the same pace as an annual rate of 1.9% after the oil crises (to cut primary energy demand per GDP (TPES/GDP) in 2050 by 60% from 2005) and expand the share of non-fossil energy sources in total primary energy supply in 2050 to 50% (to reduce CO2 emissions per primary energy demand (CO2/TPES) in 2050 by 40% from 2005). Concerning power generation mix in 2050, nuclear power will account for 60%, solar and other renewable energy sources for 20%, hydro power for 10% and fossil-fired generation for 10%, indicating substantial shift away from fossil fuel in electric power supply. Among the mitigation measures in the case of reducing CO2 emissions by 60% in 2050, energy conservation will make the greatest contribution to the emission reduction, being followed by solar power, nuclear power and other renewable energy sources (Figure 2). In order to realize this massive CO2 abatement, however, Japan will have to overcome technological and economic challenges including the large-scale deployment of nuclear power and renewable technologies.energy demand, energy supply, GHG emisisons, energy forecasting

    Current Regulatory Requirements for Biosimilars in Six Member Countries of BRICS-TM: Challenges and Opportunities

    Get PDF
    © 2021 Rahalkar, Sheppard, Santos, Dasgupta, Perez-Tapia, Lopez-Morales and Salek. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). https://creativecommons.org/licenses/by/4.0/Background: The aim of the study was to identify, interpret, and compare the current perspectives of regulatory agencies in six member countries of BRICS-TM (Brazil, Russia, India, China, South Africa, Turkey, and Mexico) on the different criteria used for biosimilar development and marketing authorisation process. Methods: A semi-quantitative questionnaire was developed covering the organisation of agency, biosimilar development criteria and marketing authorisation process and sent to seven regulatory agencies covering the BRICS-TM countries. All data was kept anonymous and confidential. Data processing and analysis was carried out; descriptive statistics were used for quantitative data and content analysis was employed to generate themes for qualitative data. Results: Out of the seven regulatory agencies included in the study, six representatives provided the responses. The perspectives of these six regulatory agencies varied on a number of aspects relating to the review criteria for biosimilar development and licencing process. The most prevalent model for data assessment is the “full review” of a marketing authorisation application. There is lack of a standard approach across the agencies on sourcing of the reference biological product, in vivo toxicity studies and confirmatory clinical studies. Most agencies restrict interaction with biosimilar developers and any scientific advice is non-binding. The marketing authorisation approval depends on scientific assessment of the dossier, sample analysis and GMP certification. The agencies do not issue any public assessment report specifying the summary basis of biosimilar approval. Conclusion: Regulatory agencies across the six emerging economies are steadily improving the regulatory mechanism in the area of biosimilars. However, there remains scope for increasing the effectiveness and efficiency of the processes by encouraging open and transparent interaction with developers, adopting a flexible approach toward accepting advanced analytical data in lieu of clinical studies and enhancing regulatory reliance amongst agencies. This will help to simplify the new biosimilar development programmes and make them more cost-effective.Peer reviewe

    Optical properties of polydisperse submicrometer aggregates of sulfur-containing zinc oxide consisting of spherical nanocrystallites

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Spherical microparticles formed by agglomerated spherical nanocrystals of sulfur-containing ZnO were prepared by homogeneous precipitation of ZnS followed by thermal treatment under an air atmosphere. The samples were characterized by thermogravimetry (TG), X-ray diffraction (XRD) and Raman, UV-Vis diffuse reflectance (DRS) and photoluminescence (PL) spectroscopies. The particle morphologies were observed by transmission and scanning electron microscopies (TEM and SEM), showing that spherical microparticles of sulfur-containing ZnO are formed by aggregates of 25 nm spherical nanocrystallites. XRD and TEM results show the presence of ZnO and ZnS phases for short time thermal treatments and only the ZnO wurtzite phase for longer thermal treatments. The presence of Zn-S bonds in sulfur-containing zinc oxide decreases the ZnO band gap energy as verified by DRS, probably due to a valence band offset.354902908Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Cost-effective high-performance air-filled SIW antenna array for the global 5G 26 GHz and 28 GHz bands

    Get PDF
    A cost-effective, compact, and high-performance antenna element for beamforming applications in all fifth-generation (5G) New Radio bands in the [24.25-29.5] GHz spectrum is proposed in this letter. The novel antenna topology adopts a square patch, an edge-plated air-filled cavity, and an hourglass-shaped aperture-coupled feed to achieve a very high efficiency over a wide frequency band in a compact footprint (0.48 lambda(0) x 0.48 lambda(0)). Its compliance with standard printed circuit board (PCB) fabrication technology, without complex multilayer PCB stack, ensures low-cost fabrication. The antenna feedplane offers a platform for compact integration of active electronic circuitry. Two different modular 1 x 4 antenna arrays were realized to demonstrate its suitability for broadband multiantenna systems. Measurements of the fabricated antenna element and the antenna array prototypes revealed a-10 dB impedance bandwidth of 7.15 GHz (26.8%) and 8.2 GHz (30.83%), respectively. The stand-alone antenna features a stable peak gain of 7.4 +/- 0.6 dBi in the [24.25-29.5] GHz band and a measured total efficiency of at least 85%. The 1 x 4 array provides a peak gain of 10.1 +/- 0.7 dBi and enables grating-lobe-free beamsteering from -50 degrees to 50 degrees

    Changes in Weight Loss, Health Behaviors, and Intentions among 400 Participants Who Dropped out from an Insurance-Sponsored, Community-Based Weight Management Program

    Get PDF
    The majority of weight management research is based on data from randomized controlled studies conducted in clinical settings. As these findings are translated into community-based settings, additional research is needed to understand patterns of lifestyle change and dropout. The purpose of this study was to examine reasons for and consequences associated with dropout (or removal) from an insurance-funded weight management program. Using a mixed methods approach with objectively measured changes in body weight and attendance along with quantitative and qualitative survey data, patterns of intention and behavior change were explored. The results from a sample of 400 respondents support the idea that there are both positive and negative consequences of program participation. Overall, 1 in 5 respondents lost a clinically significant amount of weight during the program (>5% of baseline body weight) and 1 in 3 experienced a positive consequence, while only 6% expressed a negative outcome of participation. Additionally, nearly 90% of all of the consequences that emerged from the data were positive. Attitude change was a major theme, including positive health intentions, perceived success, learning skills, and new appreciation of exercise

    Distributed antenna system using sigma-delta intermediate-frequency-over-fiber for frequency bands above 24 GHz

    Get PDF
    The fifth generation (5G) cellular network is expected to include the millimeter wave spectrum, to increase base station density, and to employ higher-order multiple-antenna technologies. The centralized radio access network architectures combined with radio-over-fiber (RoF) links can be the key enabler to improve fronthaul networks. The sigma-delta modulated signal over fiber (SDoF) architecture has been proposed as a solution leveraging the benefits of both digitized and analog RoF. This work proposes a novel distributed antenna system using sigma-delta modulated intermediate-frequency signal over fiber (SDIFoF) links. The system has an adequately good optical bit-rate efficiency and high flexibility to switch between different carrier frequencies. The SDIFoF link transmits a signal centered at a 2.5 GHz intermediate frequency over a 100 m multi-mode fiber and the signal is up-converted to the radio frequency (24-29 GHz) at the remote radio unit. An average error vector magnitude (EVM) of 6.40% (-23.88 dB) is achieved over different carrier frequencies when transmitting a 300 MHz-bandwidth 64-QAM OFDM signal. The system performance is demonstrated by a 2 x 1 multiple-input single-output system transmitting 160 MHz-bandwidth 64-QAM OFDM signals centered at 25 GHz. Owing to transmit diversity, an average gain of 1.12 dB in EVM is observed. This work also evaluates the performance degradation caused by asynchronous phase noise between remote radio units. The performance shows that the proposed approach is a competitive solution for the 5G downlink fronthaul network for frequency bands above 24 GHz

    A hybrid integration strategy for compact, broadband, and highly efficient millimeter-wave on-chip antennas

    Get PDF
    A novel hybrid integration strategy for compact, broadband, and highly efficient millimeter-wave (mmWave) on-chip antennas is demonstrated by realizing a hybrid on-chip antenna, operating in the [27.5-29.5] GHz band. A cavity-backed stacked patch antenna is implemented on a 600 mu m thick silicon substrate by using air-filled substrate-integrated-waveguide technology. A hybrid on-chip approach is adopted in which the antenna feed and an air-filled cavity are integrated on-chip, and the stacked patch configuration is implemented on a high-frequency printed circuit board (PCB) laminate that supports the chip. A prototype of the hybrid on-chip antenna is validated, demonstrating an impedance bandwidth of 3.7 GHz. In free-space conditions, a boresight gain of 7.3 dBi and a front-to-back ratio of 20.3 dB at 28.5GHz are achieved. Moreover, the antenna is fabricated using standard silicon fabrication techniques and features a total antenna efficiency above 90% in the targeted frequency band of operation. The high performance, in combination with the compact antenna footprint of 0.49 lambda(min) x 0.49 lambda(min), makes it an ideal building block to construct broadband antenna arrays with a broad steering range
    corecore