6 research outputs found

    Prediction models for Arabica coffee beverage quality based on aroma analyses and chemometrics

    Get PDF
    AbstractIn this work, soft modeling based on chemometric analyses of coffee beverage sensory data and the chromatographic profiles of volatile roasted coffee compounds is proposed to predict the scores of acidity, bitterness, flavor, cleanliness, body, and overall quality of the coffee beverage. A partial least squares (PLS) regression method was used to construct the models. The ordered predictor selection (OPS) algorithm was applied to select the compounds for the regression model of each sensory attribute in order to take only significant chromatographic peaks into account.The prediction errors of these models, using 4 or 5 latent variables, were equal to 0.28, 0.33, 0.35, 0.33, 0.34 and 0.41, for each of the attributes and compatible with the errors of the mean scores of the experts. Thus, the results proved the feasibility of using a similar methodology in on-line or routine applications to predict the sensory quality of Brazilian Arabica coffee

    Characterisation And Properties Of The Inclusion Complex Of 24-epibrassinolide With β-cyclodextrin

    No full text
    This paper reports the first study of an inclusion complex of a brassinosteroid with β-cyclodextrin. The formation of inclusion complexes between 24-epibrassinolide and β-cyclodextrin was confirmed by their physicochemical properties and the compounds were analysed by differential scanning calorimetry, powder X-ray diffraction, nuclear magnetic resonance spectrometry and scanning electron microscopy. Theoretical calculations using the MM+ HyperChem force field showed a preference for inclusion of the side chain of the epibrassinolide molecule into the β-cyclodextrin cavity to form a 1:1 inclusion complex, although complexes involving inclusion of the steroidal nucleus also possess a favourable interaction energy. Rice lamina inclination assay, employing IAC-103 and IAC-104 cultivars, showed an improved activity for the epibrassinolide-cyclodextrin complex compared to the epibrassinolide itself. The results suggest that brassinosteroid complexation with cyclodextrins may enhance the biological activity of these plant growth regulators.373233240Ahmed, S.M., Improvement of solubility and dissolution of 19-norprogesterone via inclusion complexation (1998) J. Inclusion Phenom. Mol. Rec. Chem., 30, pp. 111-125Alberts, E., Muller, B.W., Complexation of steroid-hormones with cyclodextrin derivatives. Substituent effects of the guest molecule on solubility and stability in aqueous-solution (1992) J. Pharm. Sci., 81, pp. 756-761Braun, P., Wild, A., The influence of brassinosteroids on growth and parameters of photosynthesis of wheat and mustard plants (1984) J. Plant Physiol., 116, pp. 189-196Brutti, C., Apostolo, N.M., Ferrerotti, S.A., Llorente, B.E., Krymkiewicz, N., Micropropagation of Cynara scolymus L. employing cyclodextrins to promote rhizogenesis (2000) Sci. Hortic., 83, pp. 1-10Clouse, S.D., Sasse, J.M., Brassinosteroids: Essential regulators of plant growth and development (1998) Annual Rev. Plant Physiol. Plant Molec. Biol., 49, pp. 427-451Connors, A., The stability of cyclodextrin complexes in solution (1997) Chem. Rev., 97, pp. 1325-1357Cutler, H.G., Yokota, T., Adam, G., (1991) Brassinosteroids: Chemistry, Bioactivity and Applications, ACS Symposium Series, 474. , American Chemical Society, Washington, DCDe Azevedo, M.B.A., Alderete, J.B., Lino, A.C.S., Loh, W., Faljoni-Alario, A., Durán, N., Violacein/β-cyclodextrin inclusion complex formation studied by measurements of diffusion coefficient and circular dichroism (2000) J. Incl. Phenom. Macrocyclic Chem., 37, pp. 67-74De Azevedo, M.B.M., Alderete, J., Zullo, M.A.T., Salva, T.J.G., Duran, N., Brassinosteroids: A new class of plant hormones. The biological activity of 24-epibrassinolide and an inclusion complex of 24-epibrassinolide and β-cyclodextrin (2000) Proceed. Int'l Control. Rel. Bioact. Mater., pp. 5006-5007. , Controlled Release Society, IncDurán, N., De Azevedo, M.B.M., Zullo, M.A.T., Salva, T.J.G., Alderete, J.B., (2000), Process of cyclodextrin/brassinosteroids formulation, for agricultural application, used as plant hormones, Brazilian Patent BR9906202-ADurzan, D.J., Ventimiglia, F.F., (2000), Cyclodextrin nutrients in plant tissue cultures, US Patent US 6087176 [Chem. Abstr. 133: 88976 (2000)]Fujioka, S., Noguchi, T., Takatsuto, S., Yoshida, S., Activity of brassinosteroids in the dwarf rice lamina inclination bioassay (1998) Phytochemistry, 49, pp. 1841-1848Fujioka, S., Sakurai, A., Biosynthesis and metabolism of brassinosteroids (1997) Physiol. Plant., 100, pp. 710-715Gosset, S., Gauvrit, C., (1992), Activity enhancement of benzamide herbicides by cyclodextrins. French 9222204 A1 [Chem. Abstr. 118: 75387 (1997)]Hayashi, T., Iijima, Y., Hoshino, A., Nakamura, M., (1998), Agents and method for flowering acceleration using cinnamic acid-cyclodextrin inclusion compounds Japanese Patent. Kokai Tokkyo Koho JP 10273404 A2 [Chem. Abstr. 129: 327304 (1999)]Huet, H., Jullien, M., The β-cyclodextrins delay the germination of the somatic embryos of carrot (Daucus carota L.) (1992) Acad. Sci., Ser. III, 314, pp. 171-177Ikekawa, N., Zhao, Y., Application of 24-epibrassinolide in agriculture (1991) Brassinosteroids: Chemistry, Bioactivity and Applications. ACS Symposium Series, 474, pp. 280-305. , Cutler H.G., Yokota T. and Adam G. (eds). American Chemical Society, Washington, DCKalinch, F.N., Mandava, N.B., Todhunter, J.A., Relationship of nucleic acid metabolism to brassinolide-induced responses in bean (1985) J. Plant Physiol., 120, pp. 207-214Khripach, V.A., Zhabinskii, V.N., De Groot, A.E., (1999) Brassinosteroids, A New Class of Plant Hormones, , Academic Press, Harcourt Brace & Company, USAKoehler, G., Grabner, G., Klein, C.T.H., Marconi, G., Mayer, B., Monti, S., Structure spectroscopic properties of cyclodextrin inclusion complexes (1996) J. Inc. Phenom. Mol. Rec. Chem., 25, pp. 103-108Lipkowitz, K.B., Applications of computational chemistry to the study of cyclodextrins (1998) Chem. Rev., 98, pp. 1829-1873Mandava, N.B., Plant growth promoting brassinosteroids (1988) Ann. Rev. Plant Physiol. Plant Mol. Biol., 39, pp. 23-52Marquart, V., Adam, G., Recent advances in brassinosteroids research (1991) Chemistry of Plant Protection, Herbicide Resistance - Brassinosteroids, Gibberellins, Plant Growth Regulators, 7, pp. 104-139. , Ebing W. (ed.). Springer-Verlag, BerlinMarzona, M., Carpignano, R., Quagliotto, P., Quantitative structure-stability relationships in the inclusion complexes of steroids with cyclodextrins (1992) Annal. Di Chim., 82, pp. 517-537Okii, M., (1993), Cyclodextrins for enhanced callus tissue culture of rice Japanese Patent. Kokai Tokkyo Koho JP 05292955 A2 [Chem. Abstr. 120: 1324504 (1997)]Rajagopalan, N., Chen, S.C., Chow, W.S., A study of the inclusion complex of amphotericin-B with cyclodextrin (1986) Int. J. Pharm., 29, pp. 161-168Sairam, P.K., Effect of homobrassinolide application on plant metabolism and grain yield under irrigated and moisture stress conditions of two wheat varieties (1994) Plant Growth Regul., 14, pp. 173-181Sakurai, A., Fujioka, S., The current status of physiology and biochemistry of brassinosteroids (1993) Plant Growth Regul., 13, pp. 147-159Sasse, J.M., Recent progress in brassinosteroid research (1997) Physiol. Plant., 100, pp. 696-701Sawamoto, T., (2000), Plant growth-stimulating and disease-preventing agents containing 1-triacontanol and their manufacture Japanese Patent 2000128707 A2 [Chem. Abstr. 132:304657]Stella, V.J., Rajewski, R.A., Cyclodextrins: Their future in drug formulation and delivery (1997) Pharm. Res., 14, pp. 556-567Stella, V.J., Rao, V.M., Zannou, E.A., Zia, V., Mechanisms of drug release from cyclodextrin complexes (1999) Adv. Drugs Del. Rev., 36, pp. 3-16Szejtli, J., Szente, L., Harshegyi, J., Daroczi, I., Vorashazy, L., Torok, S., (1989), Inclusion complexes and mixtures of plant growth regulators with cyclodextrins., Hung. Patent Teljes HU 47961 A2 [Chemical Abstracts 112: 50398 (1997)]Takeno, K., Pharis, R.P., Brassinosteroid-induced bending of the leaf lamina of dwarf rice seedlings: An auxin-mediated phenomenon (1982) Plant Cell Physiol., 23, pp. 1275-1281Uden, W.V., Woerdenbag, H.J., Cyclodextrins as a useful tool for bioconversions in plant cell biotechnology (1994) Plant Cell Tissue Organ Cult., 38, pp. 103-113Vardhini, B.V., Rao, S.S.R., Effect of brassinosteroids on nodulation and nitrogenase activity in groundnut Arachis hypogaea L. (1999) Phytochemistry, 48, pp. 927-930Wada, K., Marumo, S., Abe, H., Morishita, T., Nakamura, K., Uchiyama, M., A rice lamina inclination test - A micro-quantitative bioassay for brassinosteroids (1984) Agric. Biol. Chem., 48, pp. 719-726Wada, K., Marumo, S., Ikekawa, N., Morisaki, M., Mori, K., Brassinolide and homobrassinolide promotion of lamina inclination of rice seedlings (1981) Plant Cell Physiol., 22, pp. 323-326Zhou, D., Wu, Y., Xu, Q., Yang, L., Bai, C., Tan, Z., Molecular mechanics study of the inclusion of trimethylbenzene isomers in α-cyclodextrin (2000) J. Inc. Phenom. Macrocyclic Chem., 37, pp. 273-27
    corecore