194 research outputs found

    Distinct factors determine the kinetics of disease relapse in adults transplanted for acute myeloid leukaemia

    Get PDF
    Background. Disease recurrence remains the major cause of death in adults with acute myeloid leukaemia (AML) treated using either intensive chemotherapy (IC) or allogenic stem cell transplantation (allo-SCT). Aims. The timely delivery of maintenance drug or cellular therapies represent emerging strategies with the potential to reduce relapse after both treatment modalities, but whilst the determinants of overall relapse risk have been extensively characterized the factors determining the timing of disease recurrence have not been characterized. Materials and Methods. We have therefore examined, using a series of sequential landmark analyses, relapse kinetics in a cohort of 2028 patients who received an allo-SCT for AML in CR1 and separately 570 patients treated with IC alone. Results. In the first 3 months after allo-SCT, the factors associated with an increased risk of relapse included the presence of the FLT3-ITD (P <0.001), patient age (P = 0.012), time interval from CR1 to transplant (P <0.001) and donor type (P = 0.03). Relapse from 3 to 6 months was associated with a higher white cell count at diagnosis (P = 0.001), adverse-risk cytogenetics (P <0.001), presence of FLT3-ITD mutation (P <0.001) and time interval to achieve first complete remission (P = 0.013). Later relapse was associated with adverse cytogenetics, mutated NPM1, absence of chronic graft-versus-host disease (GVHD) and the use of in vivo T-cell depletion. In patients treated with IC alone, the factors associated with relapse in the first 3 months were adverse-risk cytogenetics (P <0.001) and FLT3-ITD status (P = 0.001). The factors predicting later relapse were the time interval from diagnosis to CR1 (P = 0.22) and time interval from CR1 to IC (P = 0.012). Discussion and Conclusion. Taken together, these data provide novel insights into the biology of disease recurrence after both allo-SCT and IC and have the potential to inform the design of novel maintenance strategies in both clinical settings.Peer reviewe

    How Many Liberians Live in Northwest Hennepin?

    Get PDF
    Funded by a CURA Communiversity Personnel Grant. Prepared for the Liberian Community of Minnesota Corporation (LCMC)

    Quantum Fourier Operators and Their Application

    Get PDF
    The application of the quantum Fourier transform (QFT) within the field of quantum computation has been manifold. Shor’s algorithm, phase estimation and computing discrete logarithms are but a few classic examples of its use. These initial blueprints for quantum algorithms have sparked a cascade of tantalizing solutions to problems considered to be intractable on a classical computer. Therefore, two main threads of research have unfolded. First, novel applications and algorithms involving the QFT are continually being developed. Second, improvements in the algorithmic complexity of the QFT are also a sought after commodity. In this work, we review the structure of the QFT and its implementation. In order to put these concepts in their proper perspective, we provide a brief overview of quantum computation. Finally, we provide a permutation structure for putting the QFT within the context of universal computation

    How Many Liberians Live in Northwest Hennepin?

    Get PDF
    Funded by a CURA Communiversity Personnel Grant. Prepared for the Liberian Community of Minnesota Corporation (LCMC)

    An aged bone marrow niche restrains rejuvenated hematopoietic stem cells

    Get PDF
    Aging-associated leukemia and aging-associated immune remodeling are in part caused by aging of hematopoietic stem cells (HSCs). An increase in the activity of the small RhoGTPase cell division control protein 42 (Cdc42) within HSCs causes aging of HSCs. Old HSCs, treated ex vivo with a specific inhibitor of Cdc42 activity termed CASIN, stay rejuvenated upon transplantation into young recipients. We determined in this study the influence of an aged niche on the function of ex vivo rejuvenated old HSCs, as the relative contribution of HSCs intrinsic mechanisms vs extrinsic mechanisms (niche) for aging of HSCs still remain unknown. Our results show that an aged niche restrains the function of ex vivo rejuvenated HSCs, which is at least in part linked to a low level of the cytokine osteopontin found in aged niches. The data imply that sustainable rejuvenation of the function of aged HSCs in vivo will need to address the influence of an aged niche on rejuvenated HSCs

    Aged Murine Hematopoietic Stem Cells Drive Aging-Associate Immune Remodeling

    Get PDF
    Aging-associated remodeling of the immune system impairs its functional integrity and contributes to increased morbidity and mortality in the elderly. Aging of hematopoietic stem cells (HSCs), from which all cells of the adaptive immune system ultimately originate, might play a crucial role in the remodeling of the aged immune system. We recently reported that aging of HSCs is, in part, driven by elevated activity of the small RhoGTPase Cdc42 and that aged HSCs can be rejuvenated in vitro by inhibition of the elevated Cdc42 activity in aged HSCs with the pharmacological compound CASIN. To study the quality of immune systems stemming selectively from young or aged HSCs, we established a HSC transplantation model in T- and B-cell-deficient young RAG1βˆ’/βˆ’ hosts. We report that both phenotypic and functional changes in the immune system on aging are primarily a consequence of changes in the function of HSCs on aging and, to a large extent, independent of the thymus, as young and aged HSCs reconstituted distinct T- and B-cell subsets in RAG1βˆ’/βˆ’ hosts that mirrored young and aged immune systems. Importantly, aged HSCs treated with CASIN reestablished an immune system similar to that of young animals, and thus capable of mounting a strong immune response to vaccination. Our studies further imply that epigenetic signatures already imprinted in aged HSCs determine the transcriptional profile and function of HSC-derived T and B cells

    The Sphingosine-1-Phosphate (S1P) Lysophospholipid Receptor S1P3 Regulates MAdCAM-1+ Endothelial Cells in Splenic Marginal Sinus Organization

    Get PDF
    Marginal zones (MZs) are microdomains in the spleen that contain various types of immune cells, including MZ B cells, MOMA1+ metallophilic macrophages, and mucosal addressin cell adhesion molecule 1 (MAdCAM-1)+ endothelial cells. MAdCAM-1+ and MOMA1+ cells line the sinus, that separates MZs from splenic follicles. Here we show that a receptor for the lysophospholipid sphingosine-1-phosphate (S1P), S1P3, is required for normal numbers of splenic immature and MZ B cells, and for S1P-induced chemotaxis of MZ B cells. S1P3 is also essential for proper alignment of MOMA1+ macrophages and MAdCAM-1+ endothelial cells along the marginal sinus. The lack of cohesion of the marginal sinus in S1P3βˆ’/βˆ’ mice affects MZ B cell functions, as wild-type (WT) MZ B cells migrate more into S1P3βˆ’/βˆ’ follicles than into WT follicles after treatment with lipopolysaccharide. Additionally, short-term homing experiments demonstrate that WT MZ B cells home to the S1P3βˆ’/βˆ’ spleen in increased numbers, suggesting a role for the marginal sinus in regulating MZ B cells numbers. Moreover, S1P3βˆ’/βˆ’ mice are defective in mounting immune responses to thymus-independent antigen type 2 due to defects in radiation-resistant cells in the spleen. These data identify lysophospholipids and the S1P3 receptor as essential regulators of the MZ sinus and its role as a barrier to the follicle
    • …
    corecore