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1. Introduction

Information retrieval (IR) can be defined as the set of processes involved in querying a
collection of objects in order to extract relevant data and information Dominich (2010);
Grossman & Frieder (2004). Within this paradigm, various models ranging from deterministic
to probabilistic have been applied. The goal of this chapter is to invoke a mathematical
structure on bioinformatics database objects that facilitates the use of vector space techniques
typically encountered in text mining and information retrieval systems Berry & Browne
(2005); Langville & Meyer (2006).
Several choices and approaches exist for encoding bioinformatics data such that database
objects are transformed and embedded in a linear vector space Baldi & Brunak (1998). Hence,
part of the key to developing such an approach lies in invoking an algebraic structure that
accurately reflects relevant features within a given database. Some attention must therefore
be devoted to the numerical encoding of bioinformatics objects such that relevant biological
and chemical characteristics are preserved. Furthermore, the structure must also prove useful
for operations typical of data mining such as clustering, knowledge discovery and pattern
classification. Under these circumstances, the vector space approach affords us the latitude
to explore techniques analogous to those applied in text information retrieval Elden (2004);
Feldman & Sanger (2007); Grossman & Frieder (2004).
While the methods presented in this chapter are quite general and readily applicable to
various categories of bioinformatics data such as text, sequence, or structural objects, we
focus this work on amino acid sequence data. Specifically, we apply the BLOCKS protein
sequence database Henikoff et al. (2000); Pietrokovski et al. (1996) as the template for testing
the applied techniques. It is demonstrated that the vector space approach is consistent with
pattern search and classification methodologies commonly applied within the bioinformatics
literature Baldi & Brunak (1998); Durbin et al. (2004); Wang et al. (2005). In addition, various
subspace decomposition approaches are presented and applied to the pattern search and
pattern classification problems.
To summarize, the main contribution of this work is directed towards bioinformatics data
mining. We demonstrate that information measures derived from the vector space approach
are consistent with and, in many cases, reduce to those typically applied in the bioinformatics
literature. In addition, we apply the BLOCKS database in order to demonstrate database
search and information retrieval techniques such as

• Pattern Classification
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• Compositional Inferences from the Vector Space Models

• Clustering

• Knowledge Discovery

The chapter is outlined in Figure 1 as follows. Section 2 provides basic background
regarding information retrieval and bioinformatics techniques applied in this work. Given
this foundation, Section 3 presents various approaches to encoding bioinformatics sequence
data. Section 4 then introduces the subspace decomposition methodology for the vector space
approach. Finally, Section 5 develops the approach in the context of various applications listed
in Figure 1.

Fig. 1. Flowchart for the chapter

2. Overview and notation

Part of the goal of this chapter is to phrase the bioinformatics database mining problem in
terms of vector space IR (information retrieval) techniques; hence, this section is devoted
toward reviewing terms and concepts relevant to this work. In addition, definitions,
mathematical notation and conventions for elements such as vectors and matrices are
introduced.

2.1 Vector space approach to information retrieval

Information retrieval can be thought of as a collection of techniques designed to search
through a set of objects (e.g. contained within a database, on the internet, etc) in order to
extract information that is relevant to the query. Such techniques are applicable, for example,
to the design of search engines, as well as performing data mining, text mining, and text
categorization Berry & Browne (2005); Elden (2004); Feldman & Sanger (2007); Hand et al.
(2001); Langville & Meyer (2006); Weiss et al. (2005). One specific category of this field that has
proven useful for the design of search engines and constructing vector space models for text
retrieval is known as Latent Semantic Indexing (LSI) Berry et al. (1999; 1995); Deerwester et al.
(1990); Salton & Buckley (1990). Using the LSI approach, textual data is transformed (or
’encoded’) into numeric vectors. Matrix analysis techniques Golub & Van Loan (1989) are then
applied in order to quantify semantic relationships within the textual data.

86 Bioinformatics – Trends and Methodologies
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Document 1 Document 2 Document 3 Document 4
Term 1 1 0 1 0
Term 2 0 1 1 0
Term 3 1 1 0 1
Term 4 1 1 0 1
Term 5 1 0 1 0

Table 1. Example of a 5 × 4 term-document matrix.

Consider categorizing a set of m documents based upon the presence or absence of a list
of n selected terms. Under these circumstances, an n × m term-document matrix can be
constructed where each entry in the matrix might reflect the weighted frequency of occurrence
of each term of interest. Table 1 provides an example; in this case, a matrix column vector
defines the frequency of occurrence of each term in a given document. Such a construction
immediately facilitates the application of matrix analysis for the sake of quantifying the
degree of similarity between a query vector and the document vectors contained within the
term-document matrix.
Given an n × m term-document matrix A, consider an n × 1 vector q constructed from a query
document whose components reflect the presence or absence of entries in the same list of
n terms used to construct the matrix A. The question then naturally arises how one might
quantify the similarity between the query vector q and the term-document matrix A. Defining
such a similarity measure would immediately lead to a scoring scheme that can be used to
order results from most relevant to least relevant (ie induce a ’relevance score’).
Given the vector space approach, a natural measure of similarity arises from the inner
product. Assuming an ℓ2-norm, if both q and the columns of A have been normalized to
unit magnitude, then the inner product between q and the jth column vector of A becomes

qTaj = ||q|| ||aj|| cos θj = cos θj (1)

(where the ’T’ superscript denotes the transpose). Since all components of q and A are
non-negative, all inner products will evaluate to a value such that 0 ≤ cos θj ≤ 1. Similar
queries approach a value of one indicating a small angle between the query and column
vector, dissimilar queries approach a value of zero indicating orthogonality. This specific
measure is called the ’cosine similarity’ and is abbreviated as

cos θ = qT A (2)

where cos θ represents a row vector whose components quantify the relevance between the
query and each column vector of A.
Given the vector space approach, LSI (latent semantic indexing) goes a step further in
order to infer semantic dependencies that are not immediately obvious from the raw data
contained in the term-document matrix. In terms of linear algebra, the LSI methodology
translates into characterizing the column space of A based upon some preferred matrix
decomposition. A tool commonly applied in this arena is the Singular Value Decomposition
(SVD) Golub & Van Loan (1989) where the term-document matrix is factored as follows:

A = UΣVT (3)

87Vector Space Information Retrieval Techniques for Bioinformatics Data Mining
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where U is an n × n orthogonal matrix (i.e. U−1 = UT), V is an m × m orthogonal matrix (i.e.
V−1 = VT). Furthermore, Σ is an n × m diagonal matrix of singular values such that

σ1 ≥ σ2 ≥ · · · ≥ σr > 0 (4)

where r = rank(A) and σi ≡ Σii. It turns out that the first r columns of U define an
orthonormal basis for the column space of the matrix A. This basis defines the underlying
character of the document vectors and can be used to infer linear dependencies between them.
Furthermore, it is possible to expand the matrix A in terms of the SVD:

A =
r

∑
j=1

σjujv
T
j (5)

where uj and vj represent the jth columns of U and V. This expansion weights each product
ujv

T
j by the associated singular value σj . Hence, if there is a substantial decreasing trend in the

singular values such that σj/σ1 << 1 for all j > L, one is then led to truncate the above series
in order to focus on the first L terms that are responsible for a non-negligible contribution to
the expansion. This truncation is called the low rank approximation to A:

A ≈
L

∑
j=1

σjujv
T
j (6)

The low rank approximation describes, among other aspects, the degree to which each basis
vector in U contributes to the matrix A. Furthermore, the subspace defined by the first L
columns of U is useful for inferring linear dependencies in the original document space.

2.2 Bioinformatics

Given this abbreviated overview of vector space approaches to information retrieval, we now
put it in the context of bioinformatics research. In particular, the SVD has been applied
in many contexts as it can be thought of as a deterministic version of principal component
analysis Wall et al. (2003). One specific area of honorable mention is pioneering work dealing
with the analysis of microarray data Alter et al. (2000a;b); Kuruvilla et al. (2004).
With regard to information retrieval and LSI in bioinformatics Done (2009); Khatri et al.
(2005); Klie et al. (2008), research in this area devoted to phylogenetics and multiple sequence
alignment Couto et al. (2007); Stuart & Berry (2004); Stuart, Moffett & Baker (2002) has been
reported. Much of this work can be traced back to initial foundations where the encoding
of protein sequences has been performed using the frequency of occurrence of amino acid
k-grams Stuart, Moffett & Leader (2002). Using the k-gram approach, column vectors in the
data matrix (i.e. what was previously referred to as the ’term-document matrix’) are encoded
amino acid sequences and their components are the frequency of occurrence of each possible
k-gram within each sequence. For example, if amino acids are taken k = 3 at a time, then
there exist n = 20k = 8000 possible 3-grams. Assuming there are m amino acid sequences, the
associated data matrix will be n × m = 8000 × m. For each amino acid sequence, a sliding,
overlapping window of length k is used to count the frequency of occurrence of each k-gram
and entered into the data matrix A.
The goal of this chapter is to build upon the IR and bioinformatics foundation in order
to introduce novel perspectives on operations and computations commonly encountered in
bioinformatics such as the consensus sequence, position specific scoring matrices (PSSM),

88 Bioinformatics – Trends and Methodologies
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database searches, pattern classification, clustering and multiple alignments. In doing so, it
is our intent that the reader’s view of these tools will be expanded toward novel applications
beyond those presented here.

3. Sequence encoding

Many choices exist for the encoding of and weighting of entries within the term-document
matrix; in addition, there exist a wide range of possibilities for matrix decompositions as
well as the construction of similarity and scoring measures Elden (2004); Feldman & Sanger
(2007); Hand et al. (2001); Weiss et al. (2005). The goal of this chapter is not to expand on the
set of choices for the sake of text retrieval and generic data mining; instead, we must focus
on techniques and approaches that are relevant to bioinformatics. Specifically, our attention
in this section is devoted toward developing and presenting novel encoding schemes that
preserve relevant biological and chemical properties of genomic data.
An assortment of methods have been proposed and studied for converting a protein from
its amino acid sequence space into a numerical vector Bacardit et al. (2009); Baldi & Brunak
(1998); Bordo & Argos (1991); Stuart, Moffett & Leader (2002). Scalar techniques generally
assign a real number that relates an amino acid to some physically measurable property (e.g. -
volume, charge, hydrophobicity) Andorf et al. (2002); Eisenberg et al. (1984); Kyte & Doolittle
(1982); Wimley & White (1996). On the other hand, orthogonal or ’standard’ vector encoding
techniques Baldi & Brunak (1998) embed each amino acid into a k dimensional vector space
where k is the number of symbols. For example, if k = 20 (as it would be for the complete
amino acid alphabet), the jth amino acid where 1 ≤ j ≤ 20 is represented by a 20 dimensional
vector that is assigned a one at the jth position and zero in every other position. In general,
standard encoding transforms a sequence of length L into an n = Lk dimensional vector. As
an example consider the DNA alphabet A = {A, G, C, T}. In this case k = 4 and standard
encoding transforms the alphabet symbols as

A =

⎛

⎜

⎜

⎝

1
0
0
0

⎞

⎟

⎟

⎠

. G =

⎛

⎜

⎜

⎝

0
1
0
0

⎞

⎟

⎟

⎠

. C =

⎛

⎜

⎜

⎝

0
0
1
0

⎞

⎟

⎟

⎠

. T =

⎛

⎜

⎜

⎝

0
0
0
1

⎞

⎟

⎟

⎠

. (7)

Therefore, for an example sequence s = AT with L = 2, this encoding method yields the
following vector of dimension n = Lk = 8:

xT =
(

1 0 0 0 0 0 0 1
)

.

Observe that, for typical values of L, assuming a data set of m sequences, standard encoding
leads to an n × m data matrix that is sparse.
In bioinformatics, given the limitations on biological measurement, the number of
experimental observations tends to be limited and values of m are often small with respect
to n. Under these conditions, it is often the case that vector encoding methodologies lead
to sparse data matrices (as is the case for text retrieval applications) in high dimensional
vector spaces. Observe, for example, that the k-gram method reviewed in Section 2.2 fits
this description.
We can expand upon the standard encoding approach by categorizing the standard amino
acid alphabet into families that take into account physical and chemical characteristics derived
from the literature Andorf et al. (2002); Baldi & Brunak (1998). In addition, entries within
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the data matrix can be weighted based upon their hydrophobicity Eisenberg et al. (1984);
Kyte & Doolittle (1982). Table 2 introduces alphabet symbols used to group amino acids
according to hydrophobicity, charge and volume. Tables 3-5 show examples of various
encoding schemes that we apply for this analysis.

Hydrophobicity R=hydrophobic, H=hydrophilic
Charge P=positive, N=negative, U=uncharged
Volume S=smal, M=medium, ML=medium-large, L=medium

Table 2. Encoding symbols applied in Tables 3-5

R 1 A, I, L, M, F, P, W, V, D, E
H 3 R, H, K, N, C, Q, G, S, T, Y

Table 3. Hydrophobic/Hydrophilic Encoding

RU 1 A, I, L, M, F, P, W, V
HN 2 D, E
HP 3 R, H, K
HU 4 N, C, Q, G, S, T, Y

Table 4. Charged Hydrophobic/Hydrophilic Encoding

RUS 1 A
RUM 2 F

RUML 3 I, L, M, V
RUL 4 F, W

HPML 5 R, H, K
HNM 6 D

HNML 7 E
HUS 8 G, S
HUM 9 N, C, V

HUML 10 Q
HUL 11 Y

Table 5. Volume/Charged Hydrophobic/Hydrophilic Encoding

4. Subspace decompositions for pattern classification

LSI techniques necessarily require the application of matrix decompositions such as the SVD
to infer column vector dependencies in the data matrix. Decompositions of this kind can
lead to the construction of subspaces that can mathematically categorize subsets of sequences
into families. Furthermore, since these families define specific classes of data, they can be
used as training data in order to perform database searches and pattern classification. The
application of linear subspaces for the sake of pattern classification Oja (1983) consists of
applying orthogonal projection operators based upon the training classes (an orthogonal
projection operator P obeys P = PT and P2 = P).

90 Bioinformatics – Trends and Methodologies

www.intechopen.com



Vector Space Information Retrieval Techniques

for Bioinformatics Data Mining 7

4.1 Orthogonal projections

To begin, let us assume there are training sequences of known classification that can be
categorized into M distinct classes and that the ith class contains mi encoded vectors of
dimension n. For each class, an n × mi matrix Ai can be constructed (assuming the training
vectors are column vectors). To characterize the linear subspace generated by each class, we
can apply the singular value decomposition (SVD) Golub & Van Loan (1989). In addition to
providing us with an orthonormal basis for each class, we can also glean some information
about the influence of the singular values and singular vectors from the rank approximants.
Class data matrices are therefore decomposed as

Ai = UiΣiV
T
i (8)

where Ui is n × n orthogonal matrix, Σi is n × mi whose diagonal contains the singular values
and Vi is an mi × mi orthogonal matrix. Assume the rank of each data matrix Ai is ri and let
Qi denote the n × ri matrix formed from first ri columns of Ui. Given the properties of the
SVD, the columns of Qi define an orthonormal basis for the column space of Ai. Hence, an
orthogonal projection operator for the ith class is established by computing

Pi = QiQ
T
i . (9)

(given that the SVD induces UT
i = U−1

i , it is straightforward to check that P2
i = Pi and

PT
i = Pi).

Consider an n × 1 query vector x whose classification is unknown. The class membership of
x can be ascertained by identifying the class yielding the maximum projection norm:

C(x) ≡ arg max
i=1,··· ,M

||Pix||. (10)

One computational convenience of constructing the orthonormal bases Qi is that it is not
necessary to compute the projections when making this decision. Given any Q with
orthonormal columns and orthogonal projection P = QQT such that P2 = P and P = PT ,
observe that

||Px||2 = xTPT Px = xTP2x

= xTPx = xTQQTx

= ||QTx||2 = ||xTQ||2.

(11)

Under these circumstances, to decide class membership, Equation (10) reduces to

C(x) ≡ arg max
i=1,··· ,M

||xTQi||. (12)

Furthermore, the values ||xTQi|| immediately yield relevance scores and confidence measures
for each class.

91Vector Space Information Retrieval Techniques for Bioinformatics Data Mining
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4.2 Characterization of the orthogonal complement

It is important to note that the union of all the class subspaces need not be equal to the n
dimensional vector space from which all data vectors are derived. To perform a complete
orthogonal decomposition of the n dimensional vector space in terms of the data, we first
define the matrix

A ≡ [A1 · · · AM]. (13)

The goal then is to characterize the null space N (AT), the subspace which is orthogonal to the
column space of A. Assuming the rank of A is rA, computing the SVD

A = UAΣAVT
A (14)

and forming the matrix QA from the the first rA columns of UA yields an orthogonal
decomposition of the subspace generated by all class vectors. Hence, a projection operator
for this subspace is constructed as

PA = QAQT
A. (15)

In addition, a projection for the orthogonal complement N (QT
A) of A is then easily formed via

PA⊥ = In − PA (16)

where In is the n × n identity matrix. A complete orthogonal decomposition Lay (2005) of a
vector x ∈ Rn can then be determined from

x = PAx + PA⊥x. (17)

4.3 Information retrieval

Before attempting to decide the class membership of a vector x ∈ Rn based upon Equation
(12), it is sensible to characterize the portion of the vector that contributes to the class subspace
defined by QA. Given Equation (17), this is most easily done by comparing ||PAx|| with
||PA⊥x|| as

tan(φ) =
||PA⊥x||

||PAx||
(18)

where φ is the angle between x and the subspace defined by QA. Ideally, if the class
subspaces have been completely characterized, tan(φ) should be small. Conversely, larger
values of tan(φ) would indicate that x is a member of a class subspace that has not yet been
defined. Under these circumstances, the orthogonal complement would have to be further
characterized and partitioned in order to define more classes beyond the known M existing
classes.
It is also possible to phrase the tangent measure as a scalar version of the more familiar cosine
similarity defined above in Equation (2). If ||x|| = 1, the cosine similarity measure takes on a
convenient form

cos(φ) = ||xTQA||. (19)

To see why, consider the inner product

xT(PAx) = x · PAx = ||x|| ||PAx|| cos(φ). (20)

If ||x|| = 1, then

cos(φ) =
xTPAx

||PAx||
. (21)
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However, since PA is an orthogonal projection

||PAx|| =
√

xTPT
APAx =

√

xT PAx (22)

and Equation (21) can therefore be rewritten as

cos(φ) =
√

xTPAx. (23)

On the other hand, by applying Equation (11) to Equation (22), it follows that

||xTQA|| =
√

xT PAx (24)

as well; hence, the equality of Equations (23) and (24) establishes Equation (19).
Equation (19) should also be clear from the geometric fact that

cos(φ) =
||PAx||

||x||
. (25)

Assuming ||x|| = 1, Equation (19) then easily follows by applying Equation (11) to Equation
(25). Equations (23) and (24) are presented in order to offer additional insight by relating the
inner product to the projection operator.
Of central focus in the next section will be to apply the above projection framework to
information retrieval in bioinformatics. Since the classification problem will be of significance,
we note that, given the identity in Equation (19), Equation (12) can be rephrased in term of the
cosine similarity measure

C(x) ≡ arg max
i=1,··· ,M

cos(φi) (26)

where
cos(φi) ≡ ||xTQi||. (27)

In addition, this measure of class membership becomes more reliable if the contribution of x
to the orthogonal complement of the data set is small. For instance, when φ is small, cos(φ)
in Equation (19) approaches unity. Therefore, cos(φ) can be applied as a measure of data
set reliability while cos(φi) can be used to produce relevance scores for i = 1, · · · , M. These
conclusions are summarized in Table 6.

Similarity Measure Purpose Reference
cos(φ) Data Set Reliability Equation (19)
cos(φi) Relevance Score Equations (26) - (27)

Table 6. Reliability and relevance measures to be applied in Section 5
.

5. Applications

In bioinformatics, families with similar biological function are often formed from sets of
protein or nucleic acid sequences. For example, databases such as Pfam Finn et al. (2010),
PROSITE Sigrist et al. (2010) and BLOCKS Pietrokovski et al. (1996) categorize sequence
domains of similar function into distinct classes. Given the encodings discussed in Section 3,
we seek to demonstrate how Equations (19) and (26) can applied in order to perform sequence
modeling, pattern classification and database search computations typically encountered in
bioinformatics Baxevanis & Ouellette (2005); Durbin et al. (2004); Mount (2004).

93Vector Space Information Retrieval Techniques for Bioinformatics Data Mining
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5.1 Consensus sequence

A set of m sequences of length L having some related function (e.g. DNA promoter sites
for a common sigma factor) is often represented in the form of an m × L matrix where each
column refers to a common position in each sequence. A consensus sequence sC of length
L is constructed by extracting the symbol having the highest frequency in each column.
This approach to sequence model construction, while quite rudimentary, is often useful for
visualizing obvious qualitative relationships amongst sequence elements.
Using the vector space approach, it is possible to recover the consensus sequence. Assuming
each sequence symbol is encoded into a k dimensional vector, each sequence will be encoded
into a vector of length n = Lk (see Section 3). Hence the original m × L matrix of sequences
will be transformed into an n × m data matrix of the form described in Section 2.1. In this case,
each column vector in the data matrix represents an encoded amino acid sequence.
To recover the consensus, it is useful to introduce notation for describing an empirically
derived average vector µA from an n × m data matrix A as follows:

µA ≡ (
1
m
)Ae (28)

where e and m× 1 vector of ones. Then, µA is an n× 1 column vector made up of L contiguous
’subvectors’ of dimension k where the value of k depends upon the encoding method applied.
Let νi for i = 1, · · · , L represent each subvector in µA; then, the ith symbol in the consensus
sequence sC(i) can be inferred by associating the component of νi yielding the highest average
with the originally encoded symbol. To be precise, let the alphabet of k sequence symbols (e.g.
DNA, amino acids, structural, text, etc) be defined as

A ≡ {a1, a2, · · · , ak} (29)

and let the jth component of νi be written as νij for j = 1, · · · , k. The subscript index of the
component with the maximum average in νi can therefore be extracted as

J = arg max
j=1,··· ,k

νij (30)

and the associated alphabet symbol is entered into the ith position of the consensus sequence
as

sC(i) = aJ (31)

where aJ ∈ A. The algorithm for recovering the consensus sequence can be summarized as
follows:

1. Given the n × m encoded data matrix A, compute µA.

2. For each νi where i = 1, · · · , L, apply Equation (30).

3. Given the alphabet A, apply Equation (31) in order to construct the consensus sequence
sC.

5.2 Position specific scoring matrix

The consensus sequence, while qualitatively useful, is an incomplete sequence model in
that it does not consider cases where two or more symbols in a given position are close to
equiprobable. Under these circumstances, one is forced to arbitrarily choose one symbol for
the consensus at the expense of loosing information about the other symbols. In contrast,
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the position specific scoring matrix (PSSM) is a sequence model that considers the frequency
of occurrence of all symbols in each position. Furthermore, the PSSM can be used to score
and rank sequences of unknown function in order to quantify their similarity to the sequence
model.
Given an m × L matrix of of m related sequences of length L and an alphabet of k symbols, a
k × L ’profile’ matrix of empirical probabilities is first constructed by computing the symbol
frequency for each position. The profile matrix can be thought of as the preimage of the PSSM.
While it can provide important statistical details regarding the sequence model, it does not
have the capability to score sequences in an additive fashion position by position. To do
this requires converting the profile into a k × L PSSM of additive information scores. Given
a sequence s of length L, the PSSM can then be used to compute a score for s in order to
determine its relationship to the sequence model.
Recovering the PSSM from the vector space approach is straightforward. Given an n × m data
matrix of encoded sequences, the ith subvector νi in the average vector µA computed from
Equation (28) is equivalent to the ith column in the k × L profile matrix. Simply reshaping the
kL × 1 vector µA into a k × L matrix recovers the profile. However, since the goal is to score
sequences of unknown function, we are more interested in showing how µA can be applied to
recover a PSSM score. Assume that the components of µA have been transformed by applying
the same information measure IPSSM used to convert the profile to the PSSM. Assuming an
encoding alphabet with k symbols, a query sequence s of length L can be encoded to form a
kL × 1 vector x. The PSSM score SPSSM of x can then be recovered via the inner product:

SPSSM = xTIPSSM(µA) (32)

where IPSSM(µA) represents the conversion of a probability vector into an vector of additive
information scores.
The similarity of Equation (32) with Equation (2) is worth noting. Assume several families of
sequences of equal length L are encoded into separate data matrices Ai where i = 1, · · · , M
and M is the number of families. It should be clear that the relevance score for the query
vector x can be produced using the cosine similarity according to

SPSSM = xTIPSSM (33)

where
IPSSM =

[

IPSSM(µA1) IPSSM(µA2) · · · IPSSM(µAM
)
]

(34)

is the n × M information matrix that describes the sequence families.
It is of important theoretical interest that the vector space approach recovers both the PSSM
and its information capacity to score sequences. However, it is more useful to observe
that invoking an algebraic structure on a set of sequences induces a spectrum of novel
possibilities. For instance, the SVD can be applied to the data matrix and a scoring scheme
can be derived from the computed orthogonal basis. In addition, as mentioned at the end of
Section 3, it is possible to weight both the data matrix and the encoded sequence according
to more biologically significant measures such as hydrophobicity. Finally, and probably
most importantly, the vector space formulation allows for powerful optimization techniques
Golub & Van Loan (1989); Luenberger (1969) to be applied in order to maximize the scoring
capacity of the sequence model.

95Vector Space Information Retrieval Techniques for Bioinformatics Data Mining
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5.3 Clustering

Our goal in this section is to investigate how clustering encoded sets of vectors will partition
an existing set of data. While there are several approaches to performing data clustering
Theodoridis & Koutroumbas (2003), we choose to invoke techniques that characterize the
mean behavior of a data cluster. Specifically, we analyze one supervised method (Section 5.3.2)
and one unsupervised method (Section 5.3.3). As we shall see, these approaches will enable
us to construct ’fuzzy’ regular expressions capable of algebraically describing the behavior
of a given data set. It will become clear that this approach will offer additional insight to
sequence clustering techniques typically encountered in the literature Henikoff & Henikoff
(1991); Smith et al. (1990). As the BLOCKS database Henikoff et al. (2000); Pietrokovski et al.
(1996) has been constructed from sequence clusters using ungapped multiple alignment, we
choose to apply this database as the template in order to compare it against the vector space
model.

5.3.1 The BLOCKS database

The BLOCKS database consists of approximately 3000 protein families (or ’blocks’). Each
family has a varying number of sequences that have been derived from ungapped alignments.
Therefore, while sequence lengths between two different families may differ, sequences
contained within each family, by the definition of a ’block’, must all have the same length.
Furthermore, the number of sequences in each family can vary and there is can be a
considerable degree of redundancy within some families; hence, it is sensible to analyze how
the data is distributed with respect to each BLOCKS family.
The histogram in Figure 2 illustrates the number of BLOCKS families as function of sequence
length. For example, there are 90 families containing sequences of length L = 40. From this
figure, we can conclude that it is generally possible to find at least 40 families containing
nominal sequence lengths. It is also important to characterize how the number of sequences
contained within each family is distributed throughout the database. The histogram in Figure
3 illustrates the number of BLOCKS families as function of the number of sequences contained
within each family. From this figure, we observe that many families contain somewhere
between 9 and 20 representative sequences. Finally, for the sake of clarity, we restrict our
attention to sequences having the same lengths. The extension of these results to variable
length sequences is the subject of current research based upon existing methodologies cited in
the literature Couto et al. (2007); T. Rodrigues (2004). The histogram in Figure 4 illustrates the
number of BLOCKS families as function of the number of sequences contained within in each
family; however, observe that this representative sample has been restricted to those families
containing sequences of equal length (in this case L = 30). The behavior in this graph is typical
in that most families contain on the order of 10-12 sequences of equal length. For the purposes
of illustration and without loss of generality, we choose to demonstrate the techniques in the
upcoming sections using families containing sequences of equal length.

5.3.2 Centroid approach

In this section, we cluster sequences whose BLOCKS classification is known a priori in order
to algebraically characterize each family. To do this, each family in the analysis is encoded
separately and Equation (28) is applied to each family data matrix in order to derive a family
centroid. Since the families are already partitioned, this approach is a supervised clustering
technique that will enable us to derive symbol contributions from the centroid vectors.
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Fig. 2. Histogram of the number of BLOCKS families as function of sequence length.
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Fig. 3. Histogram of the number of BLOCKS families as function of the number of sequences
contained in each family.
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Fig. 4. Histogram of the number of BLOCKS families as function of the number of sequences
contained in each family (restricted to families with sequences of length L=30)

For this numerical experiment, we apply Table 5 as the encoding scheme and choose the
BLOCKS family sequence length to be L = 30. Under these conditions, sequences will be
encoded into column vectors of dimension n = (30)(11) = 330. In addition, all encoded data
vectors are normalized to have unit magnitude.
There are 73 families in the BLOCKS database that have block length L = 30. Furthermore,
there are a total of 910 sequences distributed amongst the 73 families. As mentioned above,
there is a small degree of sequence redundancy within some BLOCKS families. After
removing redundant sequences, a total of J = 755 sequences of length L = 30 are distributed
amongst I = 73 families. Given the encoding method, the dimensions of the non-redundant
data matrix A will be 330 × 755.
Figure 5 shows the results of computing the distance between all centroids. From this
histogram, we observe that database families are fairly well-separated since the minimum
distance between any two centroids is greater than 0.6.
In order to analyze the performance of the encoding method, we apply the inner product.
Specifically, each data vector vj is classified by choosing the family associated with the
centroid yielding the largest inner product:

C(vj) ≡ arg max
i=1,··· ,I

vT
j M. (35)

where j = 1, · · · , J and
M =

[

µA1 µA2 · · · µAJ

]

(36)

For standard encoding (i.e. k = 20, n = 600), all 755 data vectors were classified correctly
using Equation (35). On the other hand, when applying the encoding method in Table 5, there
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was one misclassification. Figure 6 illustrates that data vector number 431 (which as member
of family 30, ’HlyD family secretion proteins’) was misclassified into family 54 (Osteopontin
proteins). So, while the vector dimension is reduced from 600 to 330 (because k is reduced from
20 to 11), a minor cost in classification accuracy is incurred. At the same time, we observe a
substantial reduction in dimensionality.
We note one final application of the centroid approach for deriving ’fuzzy’ regular expressions
extracted from the vector components of the centroid vectors. Consider the sum normalized
ith family centroid

NAi
≡

(

1
∑

n
j=1(µAi

) j

)

µAi
. (37)

For each subvector associated with each sequence position in NAi
, it is then possible to

write an expression describing the percentage contribution of each symbol to analytically
characterize the ith sequence family.

5.3.3 K-means approach

In contrast to the supervised approach, we now wish to take all sequences of length L in the
database and investigate how they are clustered when the unsupervised K-means algorithm
is applied. When this algorithm is applied to small numbers of families (e.g. < 10), our results
indicate that this algorithm will accurately determine the sequence families for the encoding
method presented. However, as the number of data vectors grow, the high-dimensionality
of the encoding method tends to obscure distances and, hence, can obscure the clusters. We
briefly address this issue in the conclusions section of this chapter.
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Fig. 6. Family classification of each data vector.

5.4 Database search and pattern classification

We now come to what is arguably one of the most important applications in this chapter.
In this section, we will apply the reliability and relevance measures summarized in Table 6
to perform BLOCKS database searches and pattern classification Bishop (2006); Hand et al.
(2001).

5.4.1 Characterization of BLOCKS orthogonal complement

When constructing a database, it is critical to understand and analytically characterize the
spectrum of objects not contained within the database. This task is easily achieved by
considering the orthogonal complement. As first step, we consider families with sequence
lengths L = 15 (70 families) and L = 30 (73 families). Furthermore, we compare encodings
from Table 3 and Table 5 with standard encoding. Specifically, for each encoding method,
an n × m non-redundant data matrix A consisting of all data vectors of from all families with
sequence length L is constructed. The SVD is then applied to construct an orthogonal basis QA

for the column space of A. The rank r of A (r=D[QA]) and the dimension of the null space of A
are then compared (D[N (QT

A)]). Using this approach, it is then possible to assess the quantity
n −D[QA] to determine the size of the subspace left uncharacterized by the database. Table
7 summarizes the results. From this table, it is clear that, after redundant encoded vectors
are removed, the BLOCKS database thoroughly spans the pattern space. Furthermore, the
histogram in Figure 5 further indicates that, while the sequence subspace is well represented,
there is also a good degree of separation between the family classes.

5.4.2 Pattern classification

Another important database characterization is to examine how the projection method
classifies data vectors after the class subspace bases have been constructed using the SVD.
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renewcommand11.2

Sequence Length Encoding Method n m D[QA] D[N (QT
A)]

L = 15 Standard 300 949 286 14
L = 15 Table 5 165 949 165 0
L = 15 Table 3 30 936 30 0
L = 30 Standard 600 785 576 13
L = 30 Table 5 330 785 330 0
L = 30 Table 3 60 774 60 0

Table 7. Characterization of BLOCKS orthogonal complement for various sequence lengths
and encodings

In a manner similar to Figure 6, we classify all encoded data vectors in order to determine
their family membership by applying Equation (26). Figures 7 - 8 show results where the
L = 15 and L = 30 cases have been tested. For the L = 15 case, as the vector space
dimension decreases more classification errors arise since a reduced encoding will result in
more non-unique vectors. The L = 30 case leads to longer vectors, hence, it is more robust to
reduced encodings.
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Fig. 7. Family classification of each data vector.
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Fig. 8. Family classification of each data vector.

5.4.3 BLOCKS database search

In this section, we demonstrate how to perform database searches using the relvance and
reliability equations summarized in Table 6. Database search examples have been reported
using the BLOCKS database Henikoff & Henikoff (1994). In this work, we analyze the effect of
randomly mutating sequences within the BLOCKS database to analyze family recognition as a
function sequence mutation. For the purposes of illustration, we consider a test sequence from
the Enolase protein family (BL00164D) in order to examine relevancy and database reliability.
For this test sequence with L = 15, amino acids are randomly changed where the number of
positions mutated is gradually increased from 0 to 12. Furthermore, encodings from Table 3
are compared with standard encoding.
For this series of tests, the reliability always gives a value of cos(φ) = 1, implying that the
randomization test did not result in a vector outside the subspace defined by the database.
This corroborates conclusions drawn in Section 5.4.1. Figure 9 shows that the classification
remains stable for both encodings until about 5-6 positions out of 15 have been mutated (the
family index for the original test sequence is 10). In addition, the relevance can be summarized
by computing the difference between the maximum value of cos(φi) and the second largest
value. For the sake of illustration, if the BLOCKS family with index 10 does not yield the
maximum projection, then the relevance difference is assigned a negative value. Figure 10
show the results of this computation. In this test, we observe a consistent decrease in the
relevance difference indicating that secondary occurrences are gaining influence against the
family class of the test sequence.
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Fig. 9. Family classification as a function of the number of positions randomized.
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Fig. 10. Relevance differential as a function of the number of positions randomized.
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6. Conclusions

This chapter has elaborated upon the application of information retrieval techniques to
various computational approaches in bioinformatics such as sequence modeling, clustering,
pattern classification and database searching. While extensions to multiple sequence
alignment have been alluded to in the literature Couto et al. (2007); Stuart, Moffett & Baker
(2002), there is a need to include and model gaps in the approaches proposed in this body of
work. Extensions to the vector space methods outlined in this chapter might involve including
a new symbol to represent a gap. Regardless of the symbol set employed, it is clear that the
approach described can lead to sparse elements embedded in high dimensional vector spaces.
While data sets of this kind can be potentially problematic Beyer et al. (1999); Hinneburg et al.
(2000); Houle et al. (2010); Steinbach et al. (2003), subspace dimension reduction techniques
are derivable from LSI approaches such as the SVD.
The IR techniques introduced above are readily applicable in any setting where bioinformatics
data (sequence, structural, symbolic, etc) can be encoded. This work has focused primarily
on amino acid sequence data; however, given existing structural encoding techniques
Bowie et al. (1991); Zhang et al. (2010), future work might be directed toward vector
space approaches to structural data. The methods outlined in this chapter allow for
novel biologically meaningful weighting schemes, algebraic regular expressions, matrix
factorizations for subspace reduction as well as numerical optimization techniques applicable
to high dimensional vector spaces.
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