623 research outputs found
Characterization of mixed allogeneic chimeras. Immunocompetence, in vitro reactivity, and genetic specificity of tolerance.
Mixed allogeneically reconstituted mice (B10 + B10.D2----B10) that specifically accept B10.D2 tail skin allografts were examined for in vivo and in vitro immunocompetence, patterns of hematopoietic repopulation, and in vitro reactivity. In vitro, mixed allogeneic chimeras (B10 + B10.D2----B10) manifested specific tolerance in mixed lymphocyte reactions and cell-mediated lympholysis to B10 and B10.D2 splenocytes, with normal responses to third-party (B10.BR) cells. Such chimeras were immunocompetent in B cell and helper T cell responses, as assessed by their primary plaque forming cell responses to in vivo sheep red blood cell immunization. This is in contrast to fully allogeneic chimeras, which responded less well. In addition, survival of the mixed allogeneic chimeras in a conventional animal facility was superior to that of fully allogeneic chimeras, and similar to syngeneically reconstituted (B10----B10) mice. Specific tolerance to skin grafts, degree of allogeneic engraftment, and persistence of chimerism was also assessed in a noncongenic mixed allogeneic combination (B10 + C3H----B10). Such animals manifested specific hyporeactivity to C3H skin allografts, but eventual chronic rejection of the grafts occurred in spite of stable and persistent mixed chimerism. MHC-congenic (B10.BR) skin grafts were accepted indefinitely in the same animals, suggesting that skin-specific non-major histocompatibility complex antigens were responsible for rejection of the C3H skin allografts
Hypothalamic actions of neuromedin U.
The central nervous system and gut peptide neuromedin U (NMU) inhibits feeding after intracerebroventricular injection. This study explored the hypothalamic actions of NMU on feeding and the hypothalamo-pituitary-adrenal axis. Intraparaventricular nucleus (intra-PVN) NMU dose-dependently inhibited food intake, with a minimum effective dose of 0.1 nmol and a robust effect at 0.3 nmol. Feeding inhibition was mapped by NMU injection into eight hypothalamic areas. NMU (0.3 nmol) inhibited food intake in the PVN (0-1 h, 59 ± 6.9% of the control value; P < 0.001) and arcuate nucleus (0-1 h, 76 ± 10.4% of the control value; P < 0.05). Intra-PVN NMU markedly increased grooming and locomotor behavior and dose-dependently increased plasma ACTH (0.3 nmol NMU, 24.8 ± 1.9 pg/ml; saline, 11.4 ± 1.0; P < 0.001) and corticosterone (0.3 nmol NMU, 275.4 ± 40.5 ng/ml; saline, 129.4 ± 25.0; P < 0.01). Using hypothalamic explants in vitro, NMU stimulated CRH (100 nM NMU, 5.9 ± 0.95 pmol/explant; basal, 3.8 ± 0.39; P < 0.01) and arginine vasopressin release (100 nM NMU, 124.5 ± 21.8 fmol/explant; basal, 74.5 ± 7.6; P < 0.01). Leptin stimulated NMU release (141.9 ± 20.4 fmol/explant; basal, 92.9 ± 9.4; P < 0.01). Thus, we describe a novel role for NMU in the PVN to stimulate the hypothalamo-pituitary-adrenal axis and locomotor and grooming behavior and to inhibit feeding
Ghrelin causes hyperphagia and obesity in rats.
Ghrelin, a circulating growth hormone–releasing pep-tide derived from the stomach, stimulates food intake. The lowest systemically effective orexigenic dose of ghrelin was investigated and the resulting plasma ghre-lin concentration was compared with that during fast-ing. The lowest dose of ghrelin that produced a significant stimulation of feeding after intraperitoneal injection was 1 nmol. The plasma ghrelin concentration after intraperitoneal injection of 1 nmol of ghrelin (2.83 0.13 pmol/ml at 60 min postinjection) was not significantly different from that occurring after a 24-h fast (2.79 0.32 pmol/ml). After microinjection into defined hypothalamic sites, ghrelin (30 pmol) stimu-lated food intake most markedly in the arcuate nucleus (Arc) (0–1 h food intake, 427 43 % of control; P <
Risk factors for hospital admission with RSV bronchiolitis in England: a population-based birth cohort study.
OBJECTIVE: To examine the timing and duration of RSV bronchiolitis hospital admission among term and preterm infants in England and to identify risk factors for bronchiolitis admission.
DESIGN: A population-based birth cohort with follow-up to age 1 year, using the Hospital Episode Statistics database. SETTING: 71 hospitals across England.
PARTICIPANTS: We identified 296618 individual birth records from 2007/08 and linked to subsequent hospital admission records during the first year of life.
RESULTS: In our cohort there were 7189 hospital admissions with a diagnosis of bronchiolitis, 24.2 admissions per 1000 infants under 1 year (95%CI 23.7-24.8), of which 15% (1050/7189) were born preterm (47.3 bronchiolitis admissions per 1000 preterm infants (95% CI 44.4-50.2)). The peak age group for bronchiolitis admissions was infants aged 1 month and the median was age 120 days (IQR = 61-209 days). The median length of stay was 1 day (IQR = 0-3). The relative risk (RR) of a bronchiolitis admission was higher among infants with known risk factors for severe RSV infection, including those born preterm (RR = 1.9, 95% CI 1.8-2.0) compared with infants born at term. Other conditions also significantly increased risk of bronchiolitis admission, including Down's syndrome (RR = 2.5, 95% CI 1.7-3.7) and cerebral palsy (RR = 2.4, 95% CI 1.5-4.0).
CONCLUSIONS: Most (85%) of the infants who are admitted to hospital with bronchiolitis in England are born at term, with no known predisposing risk factors for severe RSV infection, although risk of admission is higher in known risk groups. The early age of bronchiolitis admissions has important implications for the potential impact and timing of future active and passive immunisations. More research is needed to explain why babies born with Down's syndrome and cerebral palsy are also at higher risk of hospital admission with RSV bronchiolitis
Preprandial ghrelin is not affected by macronutrient intake, energy intake or energy expenditure
BACKGROUND: Ghrelin, a peptide secreted by endocrine cells in the gastrointestinal tract, is a hormone purported to have a significant effect on food intake and energy balance in humans. The influence of factors related to energy balance on ghrelin, such as daily energy expenditure, energy intake, and macronutrient intake, have not been reported. Secondly, the effect of ghrelin on food intake has not been quantified under free-living conditions over a prolonged period of time. To investigate these effects, 12 men were provided with an ad libitum cafeteria-style diet for 16 weeks. The macronutrient composition of the diets were covertly modified with drinks containing 2.1 MJ of predominantly carbohydrate (Hi-CHO), protein (Hi-PRO), or fat (Hi-FAT). Total energy expenditure was measured for seven days on two separate occasions (doubly labeled water and physical activity logs). RESULTS: Preprandial ghrelin concentrations were not affected by macronutrient intake, energy expenditure or energy intake (all P > 0.05). In turn, daily energy intake was significantly influenced by energy expenditure, but not ghrelin. CONCLUSION: Preprandial ghrelin does not appear to be influenced by macronutrient composition, energy intake, or energy expenditure. Similarly, ghrelin does not appear to affect acute or chronic energy intake under free-living conditions
Ethnicity-specific epigenetic variation in naïve CD4+ T cells and the susceptibility to autoimmunity
Latent physiological factors of complex human diseases revealed by independent component analysis of clinarrays
<p>Abstract</p> <p>Background</p> <p>Diagnosis and treatment of patients in the clinical setting is often driven by known symptomatic factors that distinguish one particular condition from another. Treatment based on noticeable symptoms, however, is limited to the types of clinical biomarkers collected, and is prone to overlooking dysfunctions in physiological factors not easily evident to medical practitioners. We used a vector-based representation of patient clinical biomarkers, or clinarrays, to search for latent physiological factors that underlie human diseases directly from clinical laboratory data. Knowledge of these factors could be used to improve assessment of disease severity and help to refine strategies for diagnosis and monitoring disease progression.</p> <p>Results</p> <p>Applying Independent Component Analysis on clinarrays built from patient laboratory measurements revealed both known and novel concomitant physiological factors for asthma, types 1 and 2 diabetes, cystic fibrosis, and Duchenne muscular dystrophy. Serum sodium was found to be the most significant factor for both type 1 and type 2 diabetes, and was also significant in asthma. TSH3, a measure of thyroid function, and blood urea nitrogen, indicative of kidney function, were factors unique to type 1 diabetes respective to type 2 diabetes. Platelet count was significant across all the diseases analyzed.</p> <p>Conclusions</p> <p>The results demonstrate that large-scale analyses of clinical biomarkers using unsupervised methods can offer novel insights into the pathophysiological basis of human disease, and suggest novel clinical utility of established laboratory measurements.</p
The Orexigenic Effect of Ghrelin Is Mediated through Central Activation of the Endogenous Cannabinoid System
INTRODUCTION
Ghrelin and cannabinoids stimulate appetite, this effect possibly being mediated by the activation of hypothalamic AMP-activated protein kinase (AMPK), a key enzyme in appetite and metabolism regulation. The cannabinoid receptor type 1 (CB1) antagonist rimonabant can block the orexigenic effect of ghrelin. In this study, we have elucidated the mechanism of the putative ghrelin-cannabinoid interaction.
METHODS
The effects of ghrelin and CB1 antagonist rimonabant in wild-type mice, and the effect of ghrelin in CB1-knockout animals, were studied on food intake, hypothalamic AMPK activity and endogenous cannabinoid content. In patch-clamp electrophysiology experiments the effect of ghrelin was assessed on the synaptic inputs in parvocellular neurons of the hypothalamic paraventricular nucleus, with or without the pre-administration of a CB1 antagonist or of cannabinoid synthesis inhibitors.
RESULTS AND CONCLUSIONS
Ghrelin did not induce an orexigenic effect in CB1-knockout mice. Correspondingly, both the genetic lack of CB1 and the pharmacological blockade of CB1 inhibited the effect of ghrelin on AMPK activity. Ghrelin increased the endocannabinoid content of the hypothalamus in wild-type mice and this effect was abolished by rimonabant pre-treatment, while no effect was observed in CB1-KO animals. Electrophysiology studies showed that ghrelin can inhibit the excitatory inputs on the parvocellular neurons of the paraventricular nucleus, and that this effect is abolished by administration of a CB1 antagonist or an inhibitor of the DAG lipase, the enzyme responsible for 2-AG synthesis. The effect is also lost in the presence of BAPTA, an intracellular calcium chelator, which inhibits endocannabinoid synthesis in the recorded parvocellular neuron and therefore blocks the retrograde signaling exerted by endocannabinoids. In summary, an intact cannabinoid signaling pathway is necessary for the stimulatory effects of ghrelin on AMPK activity and food intake, and for the inhibitory effect of ghrelin on paraventricular neurons
Reduced Secretion of YopJ by Yersinia Limits In Vivo Cell Death but Enhances Bacterial Virulence
Numerous microbial pathogens modulate or interfere with cell death pathways in cultured cells. However, the precise role of host cell death during in vivo infection remains poorly understood. Macrophages infected by pathogenic species of Yersinia typically undergo an apoptotic cell death. This is due to the activity of a Type III secreted effector protein, designated YopJ in Y. pseudotuberculosis and Y. pestis, and YopP in the closely related Y. enterocolitica. It has recently been reported that Y. enterocolitica YopP shows intrinsically greater capacity for being secreted than Y. pestis YopJ, and that this correlates with enhanced cytotoxicity observed for high virulence serotypes of Y. enterocolitica. The enzymatic activity and secretory capacity of YopP from different Y. enterocolitica serotypes have been shown to be variable. However, the underlying basis for differential secretion of YopJ/YopP, and whether reduced secretion of YopJ by Y. pestis plays a role in pathogenesis during in vivo infection, is not currently known. It has also been reported that similar to macrophages, Y. enterocolitica infection of dendritic cells leads to YopP-dependent cell death. We demonstrate here that in contrast to Y. enterocolitica, Y. pseudotuberculosis infection of bone marrow–derived dendritic cells does not lead to increased cell death. However, death of Y. pseudotuberculosis–infected dendritic cells is enhanced by ectopic expression of YopP in place of YopJ. We further show that polymorphisms at the N-terminus of the YopP/YopJ proteins are responsible for their differential secretion, translocation, and consequent cytotoxicity. Mutation of two amino acids in YopJ markedly enhanced both translocation and cytotoxicity. Surprisingly, expression of YopP or a hypersecreted mutant of YopJ in Y. pseudotuberculosis resulted in its attenuation in oral mouse infection. Complete absence of YopJ also resulted in attenuation of virulence, in accordance with previous observations. These findings suggest that control of cytotoxicity is an important virulence property for Y. pseudotuberculosis, and that intermediate levels of YopJ-mediated cytotoxicity are necessary for maximal systemic virulence of this bacterial pathogen
- …