16 research outputs found

    Non-invasive measurements of exhaled NO and CO associated with methacholine responses in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nitric oxide (NO) and carbon monoxide (CO) in exhaled breath are considered obtainable biomarkers of physiologic mechanisms. Therefore, obtaining their measures simply, non-invasively, and repeatedly, is of interest, and was the purpose of the current study.</p> <p>Methods</p> <p>Expired NO (E<sub>NO</sub>) and CO (E<sub>CO</sub>) were measured non-invasively using a gas micro-analyzer on several strains of mice (C57Bl6, IL-10<sup>-/-</sup>, A/J, MKK3<sup>-/-</sup>, JNK1<sup>-/-</sup>, NOS-2<sup>-/- </sup>and NOS-3<sup>-/-</sup>) with and without allergic airway inflammation (AI) induced by ovalbumin systemic sensitization and aerosol challenge, compared using independent-sample t-tests between groups, and repeated measures analysis of variance (ANOVA) within groups over time of inflammation induction. E<sub>NO </sub>and E<sub>CO </sub>were also measured in C57Bl6 and IL-10-/- mice, ages 8–58 weeks old, the relationship of which was determined by regression analysis. S-methionyl-L-thiocitrulline (SMTC), and tin protoporphyrin (SnPP) were used to inhibit neuronal/constitutive NOS-1 and heme-oxygenase, respectively, and alter NO and CO production, respectively, as assessed by paired t-tests. Methacholine-associated airway responses (AR) were measured by the enhanced pause method, with comparisons by repeated measures ANOVA and post-hoc testing.</p> <p>Results</p> <p>E<sub>NO </sub>was significantly elevated in naïve IL-10<sup>-/- </sup>(9–14 ppb) and NOS-2<sup>-/- </sup>(16 ppb) mice as compared to others (average: 5–8 ppb), whereas E<sub>CO </sub>was significantly higher in naïve A/J, NOS-3<sup>-/- </sup>(3–4 ppm), and MKK3<sup>-/- </sup>(4–5 ppm) mice, as compared to others (average: 2.5 ppm). As compared to C57Bl6 mice, AR of IL-10<sup>-/-</sup>, JNK1<sup>-/-</sup>, NOS-2<sup>-/-</sup>, and NOS-3<sup>-/- </sup>mice were decreased, whereas they were greater for A/J and MKK3<sup>-/- </sup>mice. SMTC significantly decreased E<sub>NO </sub>by ~30%, but did not change AR in NOS-2<sup>-/- </sup>mice. SnPP reduced E<sub>CO </sub>in C57Bl6 and IL-10<sup>-/- </sup>mice, and increased AR in NOS-2<sup>-/- </sup>mice. E<sub>NO </sub>decreased as a function of age in IL-10<sup>-/- </sup>mice, remaining unchanged in C57Bl6 mice.</p> <p>Conclusion</p> <p>These results are consistent with the ideas that: 1) E<sub>NO </sub>is associated with mouse strain and knockout differences in NO production and AR, 2) alterations of E<sub>NO </sub>and E<sub>CO </sub>can be measured non-invasively with induction of allergic AI or inhibition of key gas-producing enzymes, and 3) alterations in AR may be dependent on the relative balance of NO and CO in the airway.</p

    Stimulant Reduction Intervention using Dosed Exercise (STRIDE) - CTN 0037: Study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a need for novel approaches to the treatment of stimulant abuse and dependence. Clinical data examining the use of exercise as a treatment for the abuse of nicotine, alcohol, and other substances suggest that exercise may be a beneficial treatment for stimulant abuse, with direct effects on decreased use and craving. In addition, exercise has the potential to improve other health domains that may be adversely affected by stimulant use or its treatment, such as sleep disturbance, cognitive function, mood, weight gain, quality of life, and anhedonia, since it has been shown to improve many of these domains in a number of other clinical disorders. Furthermore, neurobiological evidence provides plausible mechanisms by which exercise could positively affect treatment outcomes. The current manuscript presents the rationale, design considerations, and study design of the National Institute on Drug Abuse (NIDA) Clinical Trials Network (CTN) CTN-0037 Stimulant Reduction Intervention using Dosed Exercise (STRIDE) study.</p> <p>Methods/Design</p> <p>STRIDE is a multisite randomized clinical trial that compares exercise to health education as potential treatments for stimulant abuse or dependence. This study will evaluate individuals diagnosed with stimulant abuse or dependence who are receiving treatment in a residential setting. Three hundred and thirty eligible and interested participants who provide informed consent will be randomized to one of two treatment arms: Vigorous Intensity High Dose Exercise Augmentation (DEI) or Health Education Intervention Augmentation (HEI). Both groups will receive TAU (i.e., usual care). The treatment arms are structured such that the quantity of visits is similar to allow for equivalent contact between groups. In both arms, participants will begin with supervised sessions 3 times per week during the 12-week acute phase of the study. Supervised sessions will be conducted as one-on-one (i.e., individual) sessions, although other participants may be exercising at the same time. Following the 12-week acute phase, participants will begin a 6-month continuation phase during which time they will attend one weekly supervised DEI or HEI session.</p> <p>Clinical Trials Registry</p> <p>ClinicalTrials.gov, <a href="http://www.clinicaltrials.gov/ct2/show/NCT01141608">NCT01141608</a></p> <p><url>http://clinicaltrials.gov/ct2/show/NCT01141608?term=Stimulant+Reduction+Intervention+using+Dosed+Exercise&rank=1</url></p

    Collection of exhaled breath and exhaled breath condensate in veterinary medicine: a review

    Full text link
    Collection of exhaled breath (EB) and exhaled breath condensate (EBC) is a noninvasive method for obtaining samples from the lower airways. While this technique has been well established for the diagnosis of lower respiratory tract diseases in human medicine, only a few studies have been performed in veterinary medicine. This article critically reviews the collection methods and parameter values measured in various animal species published to date and points out directions for further research

    Genetics of lactobacilli: Plasmids and gene expression

    No full text

    Correlations of Malformation Frequency with Environmental and Genetic Attributes in Man

    No full text

    Krebsdiagnostik beim Menschen

    No full text

    Die diagnostischen Organpunktionen

    No full text
    corecore