36 research outputs found

    Small bowel Crohn’s disease: MR enteroclysis and capsule endoscopy compared to balloon-assisted enteroscopy

    Get PDF
    New modalities are available to visualize the small bowel in patients with Crohn’s disease (CD). The aim of this study was to compare the diagnostic yield of magnetic resonance enteroclysis (MRE) and capsule endoscopy (CE) to balloon-assisted enteroscopy (BAE) in patients with suspected or established CD of the small bowel. Consecutive, consenting patients first underwent MRE followed by CE and BAE. Patients with high-grade stenosis at MRE did not undergo CE. Reference standard for small bowel CD activity was a combination of BAE and an expert panel consensus diagnosis. Analysis included 38 patients, 27 (71%) females, mean age 36 (20–74) years, with suspected (n = 20) or established (n = 18) small bowel CD: 16 (42%) were diagnosed with active CD, and 13 (34%) by MRE with suspected high-grade stenosis, who consequently did not undergo CE. The reference standard defined high-grade stenosis in 10 (26%) patients. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value of MRE and CE for small bowel CD activity were 73 and 57%, 90 and 89%, 88 and 67%, and 78 and 84%, respectively. CE was complicated by capsule retention in one patient. MRE has a higher sensitivity and PPV than CE in small bowel CD. The use of CE is considerably limited by the high prevalence of stenotic lesions in these patients

    Old-growth forests as global carbon sinks

    No full text
    LetterInternational audienceOld-growth forests remove carbon dioxide from the atmosphere at rates that vary with climate and nitrogen deposition. The sequestered carbon dioxide is stored in live woody tissues and slowly decomposing organic matter in litter and soil. Old-growth forests therefore serve as a global carbon dioxide sink, but they are not protected by international treaties, because it is generally thought that ageing forests cease to accumulate carbon. Here we report a search of literature and databases for forest carbon-flux estimates. We find that in forests between 15 and 800 years of age, net ecosystem productivity (the net carbon balance of the forest including soils) is usually positive. Our results demonstrate that old-growth forests can continue to accumulate carbon, contrary to the long-standing view that they are carbon neutral. Over 30 per cent of the global forest area is unmanaged primary forest, and this area contains the remaining old-growth forests. Half of the primary forests (6 times 10 8 hectares) are located in the boreal and temperate regions of the Northern Hemisphere. On the basis of our analysis, these forests alone sequester about 1.3 plusminus 0.5 gigatonnes of carbon per year. Thus, our findings suggest that 15 per cent of the global forest area, which is currently not considered when offsetting increasing atmospheric carbon dioxide concentrations, provides at least 10 per cent of the global net ecosystem productivity. Old-growth forests accumulate carbon for centuries and contain large quantities of it. We expect, however, that much of this carbon, even soil carbon, will move back to the atmosphere if these forests are disturbe
    corecore