543 research outputs found
Impaired interferon-γ responses, increased interleukin-17 expression, and a tumor necrosis factor–α transcriptional program in invasive aspergillosis
This article is available open access through the publisher’s website. Copyright @ 2009 Oxford University Press.Background - Invasive aspergillosis (IA) is the most common cause of death associated with fungal infection in the developed world. Historically, susceptibility to IA has been associated with prolonged neutropenia; however, IA has now become a major problem in patients on calcineurin inhibitors and allogenic hematopoetic stem cell transplant patients following engraftment. These observations suggest complex cellular mechanisms govern immunity to IA. Methods - To characterize the key early events that govern outcome from infection with Aspergillus fumigatus we performed a comparative immunochip microarray analysis of the pulmonary transcriptional response to IA between cyclophosphamide-treated mice and immunocompetent mice at 24 h after infection. Results - We demonstrate that death due to infection is associated with a failure to generate an incremental interferon-γ response, increased levels of interleukin-5 and interleukin-17a transcript, coordinated expression of a network of tumor necrosis factor–α-related genes, and increased levels of tumor necrosis factor–α. In contrast, clearance of infection is associated with increased expression of a number genes encoding proteins involved in innate pathogen clearance, as well as apoptosis and control of inflammation. Conclusion - This first organ-level immune response transcriptional analysis for IA has enabled us to gain new insights into the mechanisms that govern fungal immunity in the lung.The BBSRC, CGD Research Trust, and the MRC
Stigmergy co-ordinates multicellular collective behaviours during Myxococcus xanthus surface migration
Surface translocation by the soil bacterium Myxococcus xanthus is a complex multicellular phenomenon that entails two motility systems. However, the mechanisms by which the activities of individual cells are coordinated to manifest this collective behaviour are currently unclear. Here we have developed a novel assay that enables detailed microscopic examination of M. xanthus motility at the interstitial interface between solidified nutrient medium and a glass coverslip. Under these conditions, M. xanthus motility is characterised by extensive micro-morphological patterning that is considerably more elaborate than occurs at an air-surface interface. We have found that during motility on solidified nutrient medium, M. xanthus forges an interconnected furrow network that is lined with an extracellular matrix comprised of exopolysaccharides, extracellular lipids, membrane vesicles and an unidentified slime. Our observations have revealed that M. xanthus motility on solidified nutrient medium is a stigmergic phenomenon in which multi-cellular collective behaviours are co-ordinated through trail-following that is guided by physical furrows and extracellular matrix materials
A Comparative Analysis of Methods (LC-MS/MS, LC-MS and Rapid Test Kits) for the Determination of Diarrhetic Shellfish Toxins in Oysters, Mussels and Pipis
Rapid methods for the detection of biotoxins in shellfish can assist the seafood industry and safeguard public health. Diarrhetic Shellfish Toxins (DSTs) are produced by species of the dinoflagellate genus Dinophysis, yet the comparative efficacy of their detection methods has not been systematically determined. Here, we examined DSTs in spiked and naturally contaminated shellfish–Sydney Rock Oysters (Saccostrea glomerata), Pacific Oysters (Magallana gigas/Crassostrea gigas), Blue Mussels (Mytilus galloprovincialis) and Pipis (Plebidonax deltoides/Donax deltoides), using LC-MS/MS and LC-MS in 4 laboratories, and 5 rapid test kits (quantitative Enzyme-Linked Immunosorbent Assay (ELISA) and Protein Phosphatase Inhibition Assay (PP2A), and qualitative Lateral Flow Assay (LFA)). We found all toxins in all species could be recovered by all laboratories using LC-MS/MS (Liquid Chromatography—tandem Mass Spectrometry) and LC-MS (Liquid Chromatography—Mass Spectrometry); however, DST recovery at low and mid-level concentrations (0.86 mg/kg) was higher (60–262%). While no clear differences were observed between shellfish, all kits delivered an unacceptably high level (25–100%) of falsely compliant results for spiked samples. The LFA and the PP2A kits performed satisfactorily for naturally contaminated pipis (0%, 5% falsely compliant, respectively). There were correlations between spiked DSTs and quantitative methods was highest for LC-MS (r2 = 0.86) and the PP2A kit (r2 = 0.72). Overall, our results do not support the use of any DST rapid test kit as a stand-alone quality assurance measure at this tim
Extragenic suppressor mutations that restore twitching motility to fimL mutants of Pseudomonas aeruginosa are associated with elevated intracellular cyclic AMP levels
Cyclic AMP (cAMP) is a signaling molecule that is involved in the regulation of multiple virulence systems of the opportunistic pathogen Pseudomonas aeruginosa. The intracellular concentration of cAMP in P. aeruginosa cells is tightly controlled at the levels of cAMP synthesis and degradation through regulation of the activity and/or expression of the adenylate cyclases CyaA and CyaB or the cAMP phosphodiesterase CpdA. Interestingly, mutants of fimL, which usually demonstrate defective twitching motility, frequently revert to a wild-type twitching-motility phenotype presumably via the acquisition of an extragenic suppressor mutation(s). In this study, we have characterized five independent fimL twitching-motility revertants and have determined that all have increased intracellular cAMP levels compared with the parent fimL mutant. Whole-genome sequencing revealed that only one of these fimL revertants has acquired a loss-of-function mutation in cpdA that accounts for the elevated levels of intracellular cAMP. As mutation of cpdA did not account for the restoration of twitching motility observed in the other four fimL revertants, these observations suggest that there is at least another, as yet unidentified, site of extragenic suppressor mutation that can cause phenotypic reversion in fimL mutants and modulation of intracellular cAMP levels of P. aeruginosa
Unprecedented Alexandrium blooms in a previously low biotoxin risk area of Tasmania, Australia.
During October 2012, a shipment of blue mussels (Mytilus galloprovincialis) from the poorly monitored east coast of Tasmania, Australia, was tested by Japanese import authorities and found to be contaminated with unacceptable levels of Paralytic Shellfish Toxins (PSTs; 10 mg/kg). Subsequently local oysters, scallops, clams, the viscera of abalone and rock lobsters were also found to be contaminated. This led to a global product recall and loss to the local economy of AUD 23M. Following low toxicity during 2013 and 2014 and implementation of minimal shellfish farm closures, a more severe bloom event occurred during July-November 2015 and again June-September 2016 (up to 300,000 Alexandrium cells/L; 24 mg/kg PST in mussels, 6 mg/kg in Crassostrea gigas oysters), also causing 4 human illnesses resulting in hospitalization after consumption of wild shellfish. While Alexandrium tamarense had been detected in low concentrations in southeastern Australia since 1987, all cultured strains belonged to the mostly non-toxic group 5 (now designated A. australiense; detected since 1987) and weakly toxic group 4 (A. pacificum; detected in 1997). In contrast, the 2012 to 2016 outbreaks were dominated by highly toxic group 1 (A. fundyense) never detected previously in the Australian region. Molecular analyses suggest that A. fundyense may have been a cryptic ribotype previously present in Tasmania, but newly stimulated by altered water column stratification conditions driven by changing rainfall and temperature patterns. Increased seafood and plankton monitoring of the area now include the implementation of Alexandrium qPCR, routine Neogen™ immunological and HPLC PST tests, but ultimately may also drive change in harvesting strategies and aquaculture species selection by the local seafood industry
Subcompartmentalisation of Proteins in the Rhoptries Correlates with Ordered Events of Erythrocyte Invasion by the Blood Stage Malaria Parasite
Host cell infection by apicomplexan parasites plays an essential role in lifecycle progression for these obligate intracellular pathogens. For most species, including the etiological agents of malaria and toxoplasmosis, infection requires active host-cell invasion dependent on formation of a tight junction - the organising interface between parasite and host cell during entry. Formation of this structure is not, however, shared across all Apicomplexa or indeed all parasite lifecycle stages. Here, using an in silico integrative genomic search and endogenous gene-tagging strategy, we sought to characterise proteins that function specifically during junction-dependent invasion, a class of proteins we term invasins to distinguish them from adhesins that function in species specific host-cell recognition. High-definition imaging of tagged Plasmodium falciparum invasins localised proteins to multiple cellular compartments of the blood stage merozoite. This includes several that localise to distinct subcompartments within the rhoptries. While originating from the same organelle, however, each has very different dynamics during invasion. Apical Sushi Protein and Rhoptry Neck protein 2 release early, following the junction, whilst a novel rhoptry protein PFF0645c releases only after invasion is complete. This supports the idea that organisation of proteins within a secretory organelle determines the order and destination of protein secretion and provides a localisation-based classification strategy for predicting invasin function during apicomplexan parasite invasion. © 2012 Zuccala et al
Super-Resolution Dissection of Coordinated Events during Malaria Parasite Invasion of the Human Erythrocyte
Erythrocyte invasion by the merozoite is an obligatory stage in Plasmodium parasite infection and essential to malaria disease progression. Attempts to study this process have been hindered by the poor invasion synchrony of merozoites from the only in vitro culture-adapted human malaria parasite, Plasmodium falciparum. Using fluorescence, three-dimensional structured illumination, and immunoelectron microscopy of filtered merozoites, we analyze cellular and molecular events underlying each discrete step of invasion. Monitoring the dynamics of these events revealed that commitment to the process is mediated through merozoite attachment to the erythrocyte, triggering all subsequent invasion events, which then proceed without obvious checkpoints. Instead, coordination of the invasion process involves formation of the merozoite-erythrocyte tight junction, which acts as a nexus for rhoptry secretion, surface-protein shedding, and actomyosin motor activation. The ability to break down each molecular step allows us to propose a comprehensive model for the molecular basis of parasite invasion. © 2011 Elsevier Inc
Inherited pathogenic mitochondrial DNA mutations and gastrointestinal stem cell populations.
Inherited mitochondrial DNA (mtDNA) mutations cause mitochondrial disease, but mtDNA mutations also occur somatically and accumulate during ageing. Studies have shown that the mutation load of some inherited mtDNA mutations decreases over time in blood, suggesting selection against the mutation. However, it is unknown whether such selection occurs in other mitotic tissues, and where it occurs within the tissue. Gastrointestinal epithelium is a canonical mitotic tissue rapidly renewed by stem cells. Intestinal crypts (epithelium) undergo monoclonal conversion with a single stem cell taking over the niche and producing progeny. We show: (1) that there is a significantly lower mtDNA mutation load in the mitotic epithelium of the gastrointestinal tract when compared to the smooth muscle in the same tissue in patients with the pathogenic m.3243A>G and m.8344A>G mutations; (2) that there is considerable variation seen in individual crypts, suggesting changes in the stem cell population; (3) that this lower mutation load is reflected in the absence of a defect in oxidative phosphorylation in the epithelium. This suggests that there is selection against inherited mtDNA mutations in the gastrointestinal stem cells that is in marked contrast to the somatic mtDNA mutations that accumulate with age in epithelial stem cells leading to a biochemical defect. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.Wellcome Trust. Grant Number: G096919
MRC
ESRC
EPSRC
BBSRC
Newcastle University Centre for Ageing and Vitalit
A thermodynamic unification of jamming
Fragile materials ranging from sand to fire-retardant to toothpaste are able
to exhibit both solid and fluid-like properties across the jamming transition.
Unlike ordinary fusion, systems of grains, foams and colloids jam and cease to
flow under conditions that still remain unknown. Here we quantify jamming via a
thermodynamic approach by accounting for the structural ageing and the
shear-induced compressibility of dry sand. Specifically, the jamming threshold
is defined using a non-thermal temperature that measures the 'fluffiness' of a
granular mixture. The thermodynamic model, casted in terms of pressure,
temperature and free-volume, also successfully predicts the entropic data of
five molecular glasses. Notably, the predicted configurational entropy avoids
the Kauzmann paradox entirely. Without any free parameters, the proposed
equation-of-state also governs the mechanism of shear-banding and the
associated features of shear-softening and thickness-invariance.Comment: 16 pgs double spaced. 4 figure
Can the envisaged reductions of fossil fuel CO2 emissions be detected by atmospheric observations?
The lower troposphere is an excellent receptacle, which integrates anthropogenic greenhouse gases emissions over large areas. Therefore, atmospheric concentration observations over populated regions would provide the ultimate proof if sustained emissions changes have occurred. The most important anthropogenic greenhouse gas, carbon dioxide (CO2), also shows large natural concentration variations, which need to be disentangled from anthropogenic signals to assess changes in associated emissions. This is in principle possible for the fossil fuel CO2 component (FFCO2) by high-precision radiocarbon (14C) analyses because FFCO2 is free of radiocarbon. Long-term observations of 14CO2 conducted at two sites in south-western Germany do not yet reveal any significant trends in the regional fossil fuel CO2 component. We rather observe strong inter-annual variations, which are largely imprinted by changes of atmospheric transport as supported by dedicated transport model simulations of fossil fuel CO2. In this paper, we show that, depending on the remoteness of the site, changes of about 7–26% in fossil fuel emissions in respective catchment areas could be detected with confidence by high-precision atmospheric 14CO2 measurements when comparing 5-year averages if these inter-annual variations were taken into account. This perspective constitutes the urgently needed tool for validation of fossil fuel CO2 emissions changes in the framework of the Kyoto protocol and successive climate initiatives
- …