44 research outputs found
arrayMap: A Reference Resource for Genomic Copy Number Imbalances in Human Malignancies
Background: The delineation of genomic copy number abnormalities (CNAs) from
cancer samples has been instrumental for identification of tumor suppressor
genes and oncogenes and proven useful for clinical marker detection. An
increasing number of projects have mapped CNAs using high-resolution microarray
based techniques. So far, no single resource does provide a global collection
of readily accessible oncoge- nomic array data.
Methodology/Principal Findings: We here present arrayMap, a curated reference
database and bioinformatics resource targeting copy number profiling data in
human cancer. The arrayMap database provides a platform for meta-analysis and
systems level data integration of high-resolution oncogenomic CNA data. To
date, the resource incorporates more than 40,000 arrays in 224 cancer types
extracted from several resources, including the NCBI's Gene Expression Omnibus
(GEO), EBIs ArrayExpress (AE), The Cancer Genome Atlas (TCGA), publication
supplements and direct submissions. For the majority of the included datasets,
probe level and integrated visualization facilitate gene level and genome wide
data re- view. Results from multi-case selections can be connected to
downstream data analysis and visualization tools.
Conclusions/Significance: To our knowledge, currently no data source provides
an extensive collection of high resolution oncogenomic CNA data which readily
could be used for genomic feature mining, across a representative range of
cancer entities. arrayMap represents our effort for providing a long term
platform for oncogenomic CNA data independent of specific platform
considerations or specific project dependence. The online database can be
accessed at http://www.arraymap.org.Comment: 17 pages, 5 inline figures, 3 tables, supplementary figures/tables
split into 4 PDF files; manuscript submitted to PLoS ON
Genome-wide gene copy number and expression analysis of primary gastric tumors and gastric cancer cell lines
Control of 5-hydroxytryptamine release in the dorsal raphe nucleus by the noradrenergic system in rat brain. Role of alpha-adrenoceptors
The interactions between the brainstem serotonergic (5-hydroxytryptamine, 5-HT) and noradrenergic (NA) systems are important for the pathophysiology and treatment of affective disorders. We examined the influence of -adrenoceptors on 5-HT and NA release in the rat dorsal raphe nucleus (DR) using microdialysis. 5-HT and NA concentrations in DR dialysates were virtually suppressed by TTX and increased by veratridine. The local and systemic administration of the 1-adrenoceptor antagonist prazosin reduced the DR 5-HT output but not that of NA. The maximal 5-HT reduction induced by local prazosin administration (-78% at 100 M) was more marked than by its systemic administration (-43% at 0.3 mg/kg). The local application of NA and desipramine, to increase the tone on DR 1-adrenoceptors, did not enhance 5-HT release. The local (100 M) or systemic (0.1–1 mg/kg s.c.) administration of clonidine reduced 5-HT and NA release (-48 and -79%, respectively, at 1 mg/kg), an effect reversed by RX-821002, which by itself increased both amines when given systemically. DSP-4 pretreatment prevented the effects of clonidine on 5-HT, suggesting the participation of 2-adrenoceptors on NA elements. Moreover, the systemic effect of clonidine on 5-HT (but not NA) was cancelled by lesion of the lateral habenula and by anesthesia, and was slightly enhanced by cortical transection. These data support the view that 1-adrenoceptors in the DR tonically stimulate 5-HT release, possibly at nearly maximal tone. Likewise, the 5-HT release is modulated by 2-adrenoceptors in NA neurons and in forebrain areas involved in the distal control of 5-HT neurons.Peer reviewe
